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ABSTRACT: At sites impacted by volatile organic compounds
(VOCs), vapor intrusion (VI) is the pathway with the greatest
potential to result in actual human exposure. Since sites with VI
were first widely publicized in late 1990s, the scientific under-
standing of VI has evolved considerably. The VI conceptual model
has been extended beyond relatively simple scenarios to include
nuances, such as biological and hydrogeological factors that may
limit the potential for VI and alternative pathways, such as
preferential pathways and direct building contact/infiltration that
may enhance VI in some cases. Regulatory guidance documents
typically recommend initial concentration- or distance-based
screening to evaluate whether VI may be a concern, followed by a
multiple-lines-of-evidence (MLE) investigation approach for sites
that do not screen out. These recommendations for detailed evaluation of VI currently focus on monitoring of VOC concentrations
in groundwater, soil gas, and indoor air and can be supplemented by other lines of evidence. In this Critical Review, we summarize
key elements important to VI site characterization, provide the status and current understanding, and highlight data interpretation
challenges, as well as innovative tools developed to help overcome the challenges. Although there have been significant advances in
the understanding of VI in the past 20 years, limitations and knowledge gaps in screening, investigation methods, and modeling
approaches still exist. Potential areas for further research include improved initial screening methods that account for the site-specific
role of barriers, improved understanding of preferential pathways, and systematic study of buildings and infrastructure other than
single-family residences.

1. INTRODUCTION
Vapor intrusion (VI) is the migration of volatile chemicals from
contaminated soil or groundwater into buildings.1 VI is
considered to be the most important human exposure pathway
at sites impacted by volatile organic compounds (VOCs)
because, at most sites, it is the pathway with the greatest
potential to result in actual human exposure.1,2 Since the VI
pathway became more widely recognized in the late 1990s in the
United States (US), this exposure pathway has been attracting
increasing attention from regulatory, industrial and academic
communities in many countries.2 In 2002, the United States
Environmental Protection Agency (USEPA) issued draft
guidance documents addressing the VI pathway.3 However,
final guidance was not issued until 2015 after 13 years of debates
andmodifications.4,5 These and other guidance documents from
different countries and institutions are summarized in Tables S1
and S2. In 2018, for the first time in history, the USEPA added
two sites to the National Priorities List (Superfund) based solely
on VI risk.
Several review papers on VI of chlorinated and petroleum

VOCs have been published.6−15 However, these papers either
predate notable developments in the understanding of VI6,8,10,11

or focused on only specific aspects of VI problems.7,9,12−15

Based on the rapidly evolving recognition of the VI pathway,
associated global demands for regulatory guidance, and
fundamental advancements in the understanding of the VI
conceptual model and its characterization, a comprehensive
review that critically analyzes the latest science on VI with a
focus on investigation and decision-making practices is
warranted. The primary goals of this paper are to summarize
the state of the practice and provide perspectives on critical
knowledge gaps to improve risk assessment.

2. VAPOR INTRUSION CONCEPTUAL MODELS

A conceptual model combines site-specific information with
theoretical knowledge and practical experience from similar sites
to form a framework to describe the fate and transport processes
of contaminants from sources via pathways to receptors. After
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more than two decades of extensive studies, fundamental
improvements in the scientific understanding of VI pathways
have helped shape data collection and our understanding of the
VI conceptual model. This VI conceptual model (section 2.1)
has been extended to include preferential pathways (section
2.3) and direct infiltration of contaminated media (section
2.4) (Figure 1).
2.1. Basic Conceptual Model for Conventional Vapor

Intrusion. The basic conceptual model of VI covers the
following processes: (1) VOC partitioning from a soil or
groundwater source into soil gas; (2) diffusion through the
vadose zone from the source to the area near the building

foundation, certain VOCs, particularly petroleum VOCs, may
also be attenuated by biodegradation during diffusive migration
in the vadose zone; (3) advection and diffusion through cracks,
holes and seams in the slab and walls into the building; and (4)
mixing with indoor air at the point of exposure (Figure 1A).
Although the VI pathway has many complexities, this basic
conceptual model captures the key processes, particularly with
respect to chlorinated VOC sites. On the basis of modeling and
empirical data, certain VOCs, regulatory guidance typically
recommends evaluation of VI for buildings located up to
distances of 100 feet from subsurface VOC sources,4,5,16

particularly for chlorinated VOCs sources.

Figure 1. Various types of VI conceptual models: (A) conventional VI pathway, (B) preferential pathway, and (C) direct building contact.

Figure 2.Common barriers for conventional VI include: (A) rapid biodegradation of VOCs in the vadose zone, (B) fresh water lens on top of the water
table, (C) low permeable geological zone in the vadose zone, (D) impermeable building foundations, and (E) positive indoor air−subslab gas pressure
difference.
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Gas-phase diffusion through air-connected porous soils is
generally considered the dominant physical transport mecha-
nism in the vadose zone affecting VOC transport through the
vadose zone (e.g., >1 m below the building foundation). Soil gas
advection has been associated with fluctuations in barometric
pressure and biogenic gas production from methanogenic
biodegradation.17−19 For many buildings, the relative signifi-
cance of gas-phase advection increases near and through
building foundations because pressure gradients across the
building foundation drive advective VOC transport (Figure
1A).20,21 Recently, bubble-facilitated vapor intrusion is attract-
ing more attention.22−24 More field studies are needed to
understand the significance and universality of this pathway.
The driving force of vapor entry by advection is gas pressure

gradients across the building foundation caused by a
combination of wind effects, stack effects, and mechanical
ventilation (Figure S1).25−32 Inside the building, VOCs
undergo mixing and dilution that is influenced by mechanical
air circulation and the indoor air exchange rate (AER), which is
an important parameter that determines the VOC concentration
in indoor air.25,26,30,33−35 More information on wind effects,
stack effects, mechanical ventilation, and indoor AER can be
found in Texts S1 and S2.
The conventional VI conceptual model adopts the

assumption from the radon intrusion conceptual model that
advection is the dominant chemical transport pathway across
building foundations (Figure 1A).20,21 However, radon has
shorter half-life (only 3.8 days) while typical VOCs are relatively
persistent in the environment. As a result, diffusion may play a
more important role in the VOC migration across the building
envelope for building foundations that lack cracks or other
penetrations that allow for advective flow. Diffusive transport
through a building foundation has been most clearly observed
for buildings with high subslab soil gas VOC concentrations
(e.g., >100 000 μg/m3). For example, a field study showed that
diffusive transport through a slab-on-grade building foundation
was the dominant VI pathway when the building was under
ambient pressure conditions.36 When the building indoor air
pressure was mechanically reduced, advective transport became
the dominant pathway.36 Additional research is needed to more
accurately identify buildings where diffusive versus advective
transport is the dominant pathway across the building
foundation.
2.2. Barriers to Conventional Vapor Intrusion. The

presence of VI barriers may prevent vapor migration and
significantly reduce the potential for VI such that, at some sites,
the subsurface source zone contains high concentrations of
VOCs while the indoor air concentrations in overlying buildings
are relatively low.37 Factors that limit conventional VI include
rapid biodegradation of VOCs in the vadose zone (section
2.2.1), fresh water lens (section 2.2.2), fine-grained geological
layers (section 2.2.3), impermeable building structures (section
2.2.4), and positive indoor air pressure (section 2.2.5) (Figure
2).
2.2.1. Biodegradation. Field experience has demonstrated

that petroleum VOCs (pVOCs) pose a much lower vapor
intrusion risk than chlorinated VOCs (cVOCs). This difference
is attributed to relative differences in biodegradability.38

Microorganisms that are capable of degrading certain hydro-
carbons are ubiquitous in soil and groundwater.39,40 These
hydrocarbons can be biodegraded both aerobically and
anaerobically, but aerobic biodegradation is more energetically
favorable and is typically much faster than anaerobic

biodegradation. A number of studies have demonstrated that
aerobic biodegradation in the vadose zone can significantly
reduce the VI potential of pVOCs (Figure 2A).41−43 These
studies show that pVOCs degrade over a short vertical distance
(1−2 m) in the vadose zone when sufficient oxygen is present
(>2% v-v). Updated regulatory guidance5 and mathematical
models44,45 for petroleum vapor intrusion have incorporated
aerobic biodegradation to more accurately predict the potential
for VI from pVOCs.
In the context of vapor intrusion evaluations, cVOCs are

considered to be recalcitrant to biodegradation in the aerobic
vadose zone.38 However, a number of studies have observed that
less-than-fully chlorinated aliphatic hydrocarbons (e.g., dichlor-
oethene (DCE), vinyl chloride (VC), and 1,2-dichloroethane
(1,2-DCA)) can be biodegraded aerobically via metabolic or
cometabolic pathways at relatively high rates.46−56 Regarding
VC, bacteria capable of its aerobic degradation appear to be
ubiquitous57,58 and, as a result, the VI risk for VC is more
comparable to pVOCs than to other cVOCs. USEPA-
recommended vertical screening distances for pVOCs (4.6 m)
were applicable to screen VI risk of 1,2-DCA and 1,2-
dibromoethane (EDB) under certain site conditions.52,53

Recent studies have also demonstrated the aerobic metabolic
degradation of trichloroethylene (TCE) as the sole carbon
source by a mixed bacterial consortium59 and confirmed the
long-term stability of aerobic metabolic TCE degradation by the
bacterial consortium under a wide range of incubation
conditions.60 Further studies are thus recommended to fully
understand the extent to which aerobic biodegradation limits
the potential for cVOC VI. The derivation of vertical screening
distances for certain key cVOCs may also be possible.

2.2.2. Fresh Water Lens. VOC diffusion through water is
orders of magnitude slower than through soil gas. As a result, a
layer of water between a VOC source and a building (either at
the water table or in the vadose zone) can serve as an effective
barrier that prevents VI. In areas with heavy precipitation or
artificial recharge (e.g., irrigation), a layer of clean water may
accumulate at the interface of the water table and capillary fringe
resulting in a fresh water lens61 (Figure 2B). Because of the slow
diffusion rate of VOCs in the aqueous phase, a fresh water lens
will significantly reduce the off-gassing of VOCs from ground-
water.18,62 Water table fluctuations, however, can enhance the
transfer of VOCs from groundwater into the vadose zone,63−65

potentially reducing or eliminating the effect of a fresh water
lens. In addition, trees or other plants with roots that extend to
the water table may remove the shallowest groundwater through
evapotranspiration resulting in removal of the fresh water lens
and exposure of the VOC plume at the top of the water table.7

2.2.3. Fine-Grained Geological Layers. A number of studies
have documented the effect of high soil moisture on reducing
VOC diffusion rates in the vadose zone and reducing VI
potential (Figure 2C).62,66−68 Diffusion rates are significantly
lower through water-connected soils versus air-connected
soils.69,70 Field studies demonstrated that the presence of fine-
grained silt or clay layers with high enough water content in the
vadose zone to break the air-connected diffusion routes resulted
in high VOC attenuation from groundwater to deep soil gas.
This study found that, at these sites, generic groundwater to soil
gas attenuation factor could be adjusted by 100-fold to account
for the increased attenuation attributable to these fine-grained
layers.71 However, because VOC diffusion is more strongly
influenced by soil moisture than soil types,72 measuring the
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moisture content of fine-grained layers is an important part of
evaluating their effectiveness as a VI barrier.71

2.2.4. Building Structures. Certain building designs may
prevent the migration of VOCs into the occupied portions of a
building (Figure 2D). For example, the presence of a large
ventilated underground structure, such as a parking garage
creates a pneumatic barrier between the subsurface and the
building if there is no elevator to act as a conduit. VOC
migration into buildings can also be prevented by passively or
mechanically ventilating below the building foundation.73−75

Sealing building foundations can also act as an effective vapor
barrier; however, it may not inhibit VOCmigration to indoor air
for buildings with preferential pathways that allow for direct
VOC entry (see section 2.3).
2.2.5. Positive Indoor Air Pressure. In buildings with

consistently positive indoor air−subslab gas pressure differ-
ences, the pressure gradient drives the flow of indoor air out of
the building. A modeling study shows that even a small constant
positive pressure (e.g., 1 Pa) would increase the VOC
attenuation by several orders of magnitude (Figure 2E).76

Many building ventilation systems are designed to maintain
positive building pressure to control humidity, dust, and other
indoor air quality parameters.77 However, because wind and
stack effects can cause fluctuations in building pressure, it may
be important to verify through direct measurement that a
particular building does maintain consistently positive pressure.
2.3. Preferential Pathways. There is growing field

evidence that preferential pathways can play a critical role in
VI. The broad definition of preferential pathways is subsurface
features with high permeability that can serve as high-capacity
pathways or conduits for VOCs migrating from subsurface
sources to or into buildings (Figure 1B).4,78,79 Most building
foundations contain openings or structures that create the
potential for entry of soil gas located directly adjacent to the
building. However, when a preferential pathway provides a
conduit for transport of VOCs from a source located away from
a building, the migration of VOCs through this preferential
pathway may result in higher than anticipated VOC mass flux
and indoor air concentrations in overlying buildings.80,81 In
addition, the lateral migration of VOCs through a preferential
pathway can result in VI impacts to buildings located outside the
footprint of subsurface contamination.82

Historically, the term “preferential pathway” has been defined
to include man-made conduits (e.g., sewer lines, storm drains,
land drains, utility lines, cable ducts, and steam lines), backfill
materials outside conduits, and natural geological structures
(e.g., fractured rock, karst, and gravel layers). However, a small
but growing number of field studies show that sewer lines and
other unfilled subsurface utility conduits may be the most
important VI preferential pathways.78−85 It has been estimated
that sewer pathways are the dominant VI mechanism in more
than 20% of dry cleaner sites in the central Denmark region.86

Sewer pipes develop cracks, leaking joints, and other damage
over time because of corrosion, earth subsidence, pipe settling,
and biological intrusion.87 When cracked pipes intersect
contaminated soil or groundwater, VOC-containing fluids
(groundwater or soil gas) may infiltrate into the sewer system.
Once in a sewer, VOCs can impact indoor air via two possible
routes: (1) migration through the plumbing system directly into
the building and (2) migration through the sewer pipe to the
subslab area and into the building via foundation cracks (Figure
1B). The direct migration can occur when plumbing features
designed to prevent the migration of sewer gas into a building

fail or when plumbing does not meet typical accepted building
practice.
Consideration of relevant preferential pathways is critical for

both VI assessment and mitigation. Failure to understand the
role of a preferential pathway in VOC transport can result in an
incorrect conceptual model for VI and an incorrect mitigation
response. Despite its importance, the presence of a preferential
pathway is not easily identified by traditional VI investigation
methods. For most of the reported sewer VI sites, the
importance of the sewer pathways was identified only after
obtaining investigation data that could not be explained by the
conventional VI conceptual model4,73 or after conventional VI
mitigation methods failed to reduce the indoor air concen-
tration.80 In many cases, recently developed site investigation
technologies show great promise to identify and characterize the
preferential pathway (section 4.2).
Although there is growing awareness of the importance of

preferential pathways for VI, there is little information in
regulatory guidance documents on investigationmethods for the
evaluation of these pathways. Beckley and McHugh compiled
field monitoring data frommore than 30 sites and found that the
degree of interaction between sewer pipes and subsurface VOC
sources was the main factor that determines the degree of risk of
sewer VI.83 Higher risk sites are those with direct interaction
between sewer pipes and contaminated soil/groundwater while
lower risk sites are those with sewer pipes located above, but
separated from, the VOC source.83 They further proposed
investigation protocols for the sewer pathway: conducting
standard VI investigation (including indoor air testing) for lower
risk sites, but measuring sewer gas early during the VI
investigation process for higher risk sites.83,84 A number of
state and local regulatory agencies have referenced or
recommended this protocol for the evaluation of preferential
pathways.88,89

Two studies investigated the spatial and temporal variability
of VOC concentration in sewer gas.82,90 The spatial variability of
TCE concentrations in sewer gas ranged from nondetect to 1600
μg/m3 over an area of 1300 × 550 m.82 Temporal variability in
TCE sewer gas concentrations was over the time scale from
hours (∼3-fold difference) to months (>100-fold difference).82

Because of these variations, interpreting sewer gas data is not
necessarily straightforward.
Recently developed site investigation technologies can be

used to help identify and characterize preferential pathways (see
also section 4.2). Guo et al. used the building pressure cycling
(BPC) method in conjunction with other lines of evidence to
identify a preferential pathway in a research house.79 McHugh et
al. used compound-specific stable isotope analysis (CSIA) to
identify a sewer gas source in a research house.91 Pennell et al.
used sewer gas and indoor air sampling to identify a sanitary
sewer pipe as a PCE VI pathway.81

2.4. Direct Infiltration of Contaminated Media. For
areas with shallow/fluctuating groundwater or perched zones,
the contaminated groundwater or NAPL may directly contact
the building envelope, which may lead to direct intrusion of
these contaminated media into buildings through cracks or by
basement drainage systems (Figure 1C).1 Such infiltration of
contaminated media is also possible for underground structures,
such as parking garages, subways, and pedestrian and traffic
tunnels that are common in densely developed urban areas
(Figure S2). This scenario may result in higher vapor
concentrations inside the building or structure than would be
expected based on advection or diffusion of vapors into the
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structure. Although modern construction of structures poten-
tially located below the water table utilizes engineered barriers or
hydraulic controls to prevent water infiltration, these controls
may be absent in older buildings. When present, some control
systems operate in a way that allows the release of volatile
contaminants inside the structure (e.g., diffusion through pores
in concrete). Compared to the conventional VI pathway and the
VI preferential pathway, less research has been focused on the
direct building contact/infiltration pathway.

3. VAPOR INTRUSION PATHWAY SCREENING

Within the regulatory context, the VI pathway is considered to
be complete if VOCsmigrate from the subsurface into a building
and result in indoor air concentrations above an applicable
regulatory or risk-based concentration limit based on the
building use.4 Initial screening of the VI pathway is used to
screen out sites with very low risk for VI and to efficiently
prioritize areas or buildings that may require further VI
assessment.1 Initial VI screening usually include two methods:
concentration-based screening (section 3.1) and distance-base
screening (section 3.2). These methods may be supplemented
with other site factors, such as soil type (section 3.3).
3.1. Concentration-Based Screening. For concentration-

based screening, maximumVOC concentrations in groundwater
or soil gas are typically compared to VI pathway screening
concentrations to determine if further evaluation is needed.1

Screening concentrations are most often developed by
regulatory authorities using an attenuation factor (AF)
approach.4 AF is defined as ratio of the VOC concentration in
indoor air to the VOC concentration at some point in the
subsurface (e.g., soil gas or groundwater).2 An empirical AF is a
ratio of actual measured concentrations at a site. A screening AF
is a conservative (i.e., upper-bound) AF used to calculate
subsurface screening values (Figure 3). Using this approach, the
subsurface screening values are calculated as the applicable
indoor air concentration limit divided by the screening AF.
Initially, screening AFs were developed using simple analytical

models such as the Johnson and Ettinger (J&E) model and

consideration of building air exchange rates.3 More recently,
large data sets of empirical AFs have also been compiled and
upper-bound values from these data sets have been used to
support the selection of screening AFs.92 Consistent with
USEPA recommendations,4 many regulatory authorities have
adopted AFs of 0.03 for soil gas to indoor air and 0.001 for
groundwater to indoor air, which are relatively conservative.4,16

In 2018, 13 of 14 U.S. state environmental agencies with
groundwater to indoor air attenuation factors recommended a
value of 0.001 for residences; for shallow soil gas to indoor air, 11
of 23 agencies recommend a value of 0.03 and only 4
recommended a value outside a range of 0.02 to 0.1.16

Researchers have identified a number of limitations with the
AF approach used to calculate subsurface screening concen-
trations. First, when background VOC sources contribute to the
VOC concentration in indoor air, the empirical attenuation
factor can be biased high (i.e., underestimate true attenu-
ation).93−95 If this bias is not adequately controlled when
analyzing large empirical AF data sets, then the resulting upper-
bound values used for screening AFs will also be biased high.96

Second, the individual empirical AFs included in large data sets
are typically based on a single indoor air and a single subsurface
sample. These single measurement empirical AFs exhibit high
variability that results in overconservative upper-bound screen-
ing;95,97−100 empirical AFs using spatially and temporally
averaged VOC concentrations would be more representative
of long-term vapor attenuation. Third, empirical AFs measured
at single-family residences are not representative of attenuation
for other types of buildings.101 Finally, screening AFs do not
account for other site-specific factors that can affect VOC
attenuation such as biodegradation (see section 2.2.1) or fine-
grained soil layers (see section 2.2.3). Data gaps associated with
the development of refined screening AFs are discussed in
section 6.

3.2. Distance-Based Screening. Distance-based screening
is generally applied based on the lateral or vertical distance
between the edge of the subsurface VOC source and the bottom
of the building foundation.1 If the building is closer to the source

Figure 3. Conceptual illustration of an empirical attenuation factor (AF) and a screening attenuation factor (AFupper‑bound). The AF distribution graph
was adapted from USEPA (2012).92 AF = empirical attenuation factor, Cia = measured concentration in indoor air, Css = measured concentration in
subslab, Cia‑scrn = screening level in indoor air, Css‑scrn = screening level in subslab, and AFupper‑bound = screening (upper-bound) attenuation factor.
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than the screening distance, then further evaluation of VI is
recommended.4 A distance of 100 feet (30 m) has commonly
been used for both lateral and vertical distance-based screening
since the late 1990s−early 2000s.3,4 This screening distance is
supported by modeling102 and observations at other VI sites.103

The approach does not account for VOC migration through
preferential pathways, which may occur over greater distances.
In recent years, shorter screening distances for petroleum

hydrocarbons have been widely adopted based on the
recognition that petroleum VOCs rapidly biodegrade within
the vadose zone.38,46,104 For higher strength (LNAPL) sources,
vertical separation distances of 15 to 18 feet have been
recommended, while distances of 5 to 6 feet have been
recommended for lower strength (dissolved-phase) sour-
ces.5,105,106 While large data sets were used to develop
petroleum screening distances, these data sets focused on
underground storage tank sites with gasoline releases,5,105,107

including gasoline with up to 10% v/v ethanol17,18 or 15% v/v
methyl tert-butyl ether.108 Less data were available, and there is
accordingly higher uncertainty, for screening distances asso-
ciated with other fuel types52,108 and other site types such as
industrial facilities (e.g., refinery). Vertical screening distances
may not be applicable for sites with very large buildings where
the large foundation footprint can limit the availability of oxygen
in the vadose zone.5,36,109 In addition, published studies focus on
key risk drivers for petroleum (e.g., benzene). Less information
is available on the VI risks associated with total petroleum
hydrocarbons (TPH),110 in part, because of uncertainties in
quantifying vapor concentrations in indoor air resulting from
background sources and challenges in defining VI risk-based
screening levels for complex TPH mixtures with varying
composition, toxicity, and fate and transport. The VI screening
distances recommended by ITRC (2014) and US EPA (2015)
have, nevertheless, been validated for certain TPH carbon
ranges (e.g., C5−C8 aliphatics, C9−C12 aliphatics, and C9−
C10 aromatics) with published toxicity factors.111

3.3. Soil Type and Other Site Factors. Although initial
pathway screening most commonly relies only on consideration
of concentration and distance, attempts have been made to
include other site factors such as soil type. Early USEPA
guidance provided a matrix of screening concentrations for
groundwater values based on site-specific soil type and vertical
distance.3 However, the USEPA empirical AF data set did not
show clear relationships between AFs and either soil type or
vertical distance92 and these site factors were not included for
initial screening in more recent USEPA guidance.4 The absence
of an observed relationship between soil type and AFmay be due
to the very large overall site-to-site variation in empirical AFs. In
other words, building-specific variations in VOC attenuation
may overwhelm the effect of soil type. Amore focused field study
demonstrated a clear relationship between soil type and VOC
attenuation from groundwater to soil gas with higher attenuation
in fine-grained soils.71 However, currently, most VI guidance
documents do not account for soil type during initial pathway
screening.
The broad range of AFs observed across VI sites (more than 3

orders of magnitude variation) indicates that site factors beyond
VOC concentration and distance are critical in the occurrence of
VI. Because of this, regulatory screening levels are usually set at
very protective levels and initial pathway screening retains the VI
pathway at a large number of sites where the actual risk of VI
could be very low. A better understanding of the effects of soil
type and other site factors on VOC attenuation and more

rigorous soil vapor sampling protocols are would facilitate the
development of more robust initial screening criteria for the VI
pathway.

4. VAPOR INTRUSION INVESTIGATION TOOLS
Current VI investigation and risk assessment practices defined in
regulatory and consensus-based guidance documents rely on a
multiple-lines-of-evidence (MLE) approach which most often
involves monitoring of different environmental media (section
4.1) and can be supplemented by innovative investigation
(section 4.2), VI modeling (section 4.3), and nonconventional
lines of evidence (Text S3).4

4.1. Traditional Concentration-Based Investigation
Method. In practice, VI risk assessment decisions are made
primarily based on VOC concentrations in groundwater, soil
gas, and indoor air.1 Although the sampling and analysis
methods for these media are relatively mature, they still face
problems such as sample container contamination112,113 and
several other challenges (see section 5). Note that soil sampling,
which currently provides the most important evidence for site
risk assessment and decision making in China,1,113,114 is
generally not recommended for VI assessment based on USA’s
experiences,113,114 since no studies reported meaningful
correlations between paired VOC concentrations in soil and
soil gas and volatilization loss of VOCs is difficult to avoid during
soil sampling.113,115,116

4.2. Innovative Investigation Techniques. In recent
years, a number of innovative VI investigation techniques have
been developed (Table 1). While these techniques can help
clarify the VI conceptual model and supplement the
concentration-based investigation,15 the use of these tools is
not common due, in part, to two reasons. First, practitioners and
regulators may not be very familiar with these innovative
methods. Second, most of the innovative techniques are not
included in regulatory guidelines. Training practitioners and
regulators and getting standard procedures written into
regulatory guidance are critical for the wide acceptance of
these techniques in the future.

4.3. Mathematical Models. Vapor intrusion models
simulate vapor migration through the vadose zone and entry
into the building and can be used to estimate indoor air
concentration from subsurface contamination. VImodeling is an
active research area, and a large number of VI models with
different model assumptions, governing equations, boundary
conditions, model outputs and functions have been pub-
lished.22,28,44,45,76,106,120,172,174−203 Several review papers on
VI models have been published;6,10−12,14,204 therefore, this
section focuses on the limitations, knowledge gaps, and
appropriate applications of VI models that previous review
papers do not address.
There are still debates on the accuracy and reliability of VI

models. No VI model has been strictly validated by field data,
thus limiting the utility of use of models for VI risk
assessment.1,14,114 Although only a few studies have compared
VI model predictions against site data, these studies have
generally found orders-of-magnitude deviation between model-
predicted and measured indoor air concentrations11,37,205−208

despite recent model show improved performance.30 While
most of these studies have found that VI models generally
overpredict indoor air concentration, under-predictions may
also occur in some cases.205,209 An evaluation of five VI models
using data from four petroleum sites found that models that
include advective transport through the foundation generally
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overpredicted VI. However, models accounting only for
diffusive transport could yield overpredictions or under-
predictions.207 An evaluation of seven VI models using data
from two petroleum sites and one cVOC site found that all of the
models had a tendency to overpredictions of VI but that the
most accurate models could also under-predict VI in some
cases.205

A mathematical model is a simplification of reality and hence
will not reflect all of reality. Errors and inaccuracy associated
with VI modeling come from four main sources.1 (1) Incorrect
conceptual model. For example, most VI models are based on
the conventional VI pathway (section 2.1). Using these models
for sites impacted by preferential pathways could result in
significant errors. (2) Incomplete model. For example, many VI
models account for vapor entry into buildings only though a gap
in the foundation around the perimeter of building and do not
account for other important building characteristics such as
fluctuating building pressure. Such models may predict
unrealistic distributions of VOCs in soil gas below the building
and cannot be used to evaluate temporal variations in VI. (3)
Inaccurate mathematical approximations. For example, the
Millington and Quirk equation,69 which is used by many VI
models to calculate the effective diffusion coefficient of VOCs in
the vadose zone, is based on empirical relationships that may not
be representative of the true value.210 (4) Inaccurate model
input parameters. Most of VI models require a large number of
input parameters (e.g., > 20 in J&E model), some of the input
values are very difficult (if not impossible) to obtain from target
site. Sensitivity and uncertainty analysis show that even small
changes in some input parameters may lead to several orders of
magnitude of variation in predicted indoor air concentra-
tion.33,211−217 Unreasonable input values result in unreasonable
outputs. Further, improper use of models or improper
interpretation of modeling results would lead to misleading
conclusions. For example, improper use of the J&E model has
mistakenly screened out more than 300 homes at the Redfield
site of US based on simulated indoor air concentrations up to
200 times lower than the monitoring data.211 In contrast, using
model parameters based on field-derived data indicated
agreement of the J&E model to within an order-of-magnitude
of the data,218 a reasonable accuracy for a screening-level model.
The difference indicates both the importance in selection of
appropriate model parameters214 and the usefulness of
sensitivity evaluations in model applications.
“All models are wrong, but some are useful”.219 Although VI

models are not perfect, they can be useful in some situations.1

Conservative models can be used as part of the VI site screening
process. Models can provide theoretical illustrations and
predictions of fate and transport processes of VI pathway,
complimenting laboratory and field research and improving
mechanistic understandings. Modeling results can also be used
as one line of evidence as part of the MLE approach for VI
assessment.4,5 However, they should not be used as stand-alone
conclusive evidence for VI assessment and decision making as
was common practice in the US prior to the early 2000s and now
elsewhere, such as in China.1,114 Rigorous model validation
using independent field investigation data sets (i.e., data sets not
used in model development) is important for an improved
understanding of the accuracy and limitations of VI models.

5. CHALLENGES IN VAPOR INTRUSION
INVESTIGATION AND DECISION MAKING

VOC concentration data typically constitute the basis for
current VI risk assessment and decision-making practices.
However, interpretation of indoor air and soil gas monitoring
data is usually complicated by several challenges including
spatial and temporal variability in concentration data (section
5.1) and background sources contributing to indoor air VOCs
(section 5.2).

5.1. Spatial and Temporal Variability in Monitoring
Data. 5.1.1. Soil Gas. There can be large spatial variabilities in
soil gas concentrations even beneath small buildings. In a < 200
m2 duplex house, the chloroform concentrations varied from
nondetect to 69 μg/m3 among five subslab soil gas sampling
locations.220 In a 15× 14mwarehouse, the TPH concentrations
in subslab (0.15 m bgs) and shallow soil gas (0.6 m bgs) had
large spatial variation (<100 to >10 000 mg/m3) while the
variability was smaller for deep soil gas (1.2 m bgs).221 Similar
spatial variabilities of soil gas were reported in other
studies.98,103,222 Factors that contribute to the spatial variability
include heterogeneity in geological and hydrogeological
conditions, contaminant distribution in the subsurface, building
structures, ground covers, and preferential pathways.103,223,224

These results imply that (1) a few samples (by conventional
method) may not be representative of the VOC distribution in
subslab and shallow soil gas, (2) exterior soil gas cannot
represent the VOC distribution in subslab soil gas at the same
depth, and (3) a few samples may be enough to characterize
deep (source zone) soil gas.
While spatial variability can be high for soil gas, there is often a

lesser degree of temporal variability. At a drycleaner site, the
PCE concentration in subslab soil gas varied by ∼10-fold over
1.5 years.103 Long-term (seasonal) and short-term (daily)
variability of subslab and exterior soil gas were also reported at
other sites.98,225

5.1.2. Indoor Air. In contrast to soil gas, spatial variability in
indoor air is typically low. Indoor air samples are typically
collected in occupied spaces to evaluate risk.4 In such areas, the
air is generally well mixed, resulting in relatively consistent
concentrations in the structure. This is particularly true in the
absence of localized VOC emission sources or in buildings
without separate air handling zones.226 Higher indoor air VOC
concentrations within a specific area such as the basement, a
closet, bathroom, or garage usually indicate the presence of an
indoor source instead of subsurface VI. Portable GC-MS/GC
measurements have shown 100-fold concentration differences
when localized sources were present.124,126,130 These results
suggest that (1) for large buildings, separate samples should be
collected from different air handling zones and (2) field
screening with portable instruments may be used to supplement
bulk air samples, to identify specific sources and distinguish
between indoor sources and vapor intrusion.
There can be large temporal variabilities in indoor air

concentrations over the time scale from hours to months. In
cases with documented VI, indoor concentrations can vary
seasonally with higher concentrations commonly detected in the
winter heating season.149,155 In buildings impacted by conven-
tional VI, indoor air concentrations (by 24-h sampling)
commonly vary by <10-fold.84,103 For instance, in separate
studies of 45 residences and 3 commercial, industrial, and
residential buildings, indoor air concentrations typically varied
by less than 3-fold.103 However, there appears to be a greater
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degree of variability within buildings impacted by sewer VI. For
example, 1000-fold (<0.01−10 μg/m3) seasonal variation of
indoor air TCE was observed over 2.5 years as a result of VOC
flux through a land drain line.30,121,122,155 In two other sewer VI
cases, >100-fold variations in indoor air concentrations were
reported over one year.81,149 The apparent difference between
conventional and sewer VI is consistent with (1) VOC
concentrations in sewers exhibiting high variability and (2)
the expectation that pipe flow into buildings is more sensitive to
a variety of factors than soil gas entry into buildings.
Building differential pressure is likely a key parameter for

temporal variations in VI. Building differential pressure would
affect pipe flow into buildings and could drive other vapor entry
mechanisms.122,227 For instance, daily variations in TCE indoor
air concentrations (<10−400 μg/m3) have been reported by
high-frequency continuousmonitoring in a large warehouse, and
has been attributed to indoor-subsurface pressure differentials
(see Table 1).168 Many other factors such as temporal variability
of soil moisture,223,228 soil temperature,223,228 building
ventilation (combustion applications, open windows, and
HVAC),27,227 VOC mass storage in the groundwater and
vadose zone,229 meteorological conditions (e.g., barometric
pressure, wind, and temperature),230 and groundwater−water
table fluctuation64 may also contribute to the temporal
variability of indoor air concentrations.
A variety of investigation methods have been developed to

control for temporal variability in indoor air (Table 1).
Common practice includes 24 and 8 h sampling periods for
residential and industrial buildings, respectively. However,
longer duration sampling using passive sorbent samplers231,232

or capillary flow controllers for canisters233 reduces the impact
of temporal variability by averaging over a longer time
period.231,232 Another technique is building pressure cycling
which can be used to “turn on” or “turn off”VI, thereby reducing
concerns with false negatives and false positives.118,124,234 High
purge volume sampling has been developed to alleviate the
spatial variability of subslab soil gas. For buildings with a high
permeability layer (e.g., gravel) below the foundation, high
purge volume sampling can be used to provide a spatially
averaged subslab concentration over a large spatial area below
the foundation from one or a few sample points.171,173

5.2. Indoor Air Background Concentrations. Interpre-
tation of indoor air data can be confounded by the background
contribution of VOCs from indoor and outdoor VOC sources
that are unrelated to VI.2,4 Common indoor background
sources include consumer products, building materials,
combustion processes (e.g., smoking, cooking, and heating),
and occupant activities (e.g., cleaning, car repair, and
decoration).235 Outdoor air can also contribute to indoor air
contamination.146 A wide variety of consumer products have
been found to contain BTEX constituents236 or chlorinated
VOCs.126 Emissions testing has shown that VOCs are released
from both unopened and opened/partially used consumer
products with emissions rates as high as 24 μg/min reported for
a partially used product containing PCE.237,238 While some
consumer products are clearly labeled as containing specific
VOCs, other products do not identify the presence of VOCs that
may be present as impurities or are considered inert ingredients.
For example, self-defense pepper sprays advertised as “non-
flammable” commonly use TCE as the carrier solvent without
listing its presence on the product label. In addition to consumer
products, chemical reactions between bleach cleaners and

organic matter can also result in detectable levels of chlorinated
VOCs in indoor air.239

Studies have explored the typical range and variation trends of
indoor background VOC concentrations in different countries/
areas including North America,235,240−244 China,245−248 Eu-
rope,249−251 and others.248,252−254 The background concen-
tration of the same VOC varied considerably among different
areas/countries.248,251,255 This can be attributed to differences
in the geographic settings, climatic conditions, building
structures and materials, indoor air exchange rates, living
habit, household products, and outdoor air concentrations.
Compilations of North American data reveal several interesting
phenomena:235,242 (1) typical indoor background concentra-
tions are log-normally distributed; (2) the variations between
the 25th to the 95th percentile values of most VOCs are >10-
fold (typical sampling period are between 12 and 24 h; longer
sampling period would result in lower variations); (3) for a
number of common VOCs such as benzene, carbon
tetrachloride, chloroform, and PCE, the upper end of the
observed range for background indoor air concentrations
typically exceeds USEPA’s regional screening levels.256 For
many individual VOCs, the observed range of indoor air
concentrations has generally declined in recent years likely due
to concerns regarding the toxicity of individual VOCs resulting
in the general move toward the development of consumer
products containing lower total VOC concentrations.241,257

However, indoor air concentrations of at least one individual
chlorinated VOC (1,2-dichloroethane) has been observed to
increase over time apparently due to changes in the
manufacturing of molded plastics.238,243

To reduce the impact of indoor sources, regulatory guidance
typically recommends identifying possible indoor sources by
occupant questionnaires and indoor surveys and removing them
prior to testing of indoor air for the evaluation of vapor
intrusion.4 However, in many cases, it is not possible to identify
all sources though visual inspection. In other cases, removal of
indoor sources is not practical.4 In several cases where
background sources were not properly identified or considered
during initial testing, VOC detections in indoor air were initially
attributed to VI; indoor sources were identified only through
subsequent testing.146,238,243,258 If the background concen-
tration is mistakenly attributed to VI, it may result in
unnecessary and ineffective site investigation and mitigation.
Therefore, it is necessary to assess the contribution of
background sources to indoor air contamination.
Innovative site investigation techniques can be used to

distinguish the background sources from VI (Table 1). Portable
GC-MS or GC has been successfully used for identifying
potential indoor background sources or vapor entry
points.124,126,128,130,131 Another applicable method is building
pressure cycling (BPC) which involves manipulation of indoor-
outdoor pressure conditions to either induce or suppress
VI.118,121,234 Under positive indoor pressure, subsurface VI is
minimized and indoor air sampling can be used to characterize
the background sources of VI.118,119 A combination of portable
GC-MS and BPC has been successfully used to identify indoor
background sources at several sites.124,126,259 CSIA has been
used to distinguish between background sources and
VI.91,143,260 Isotope signatures of VOCs may change over time
due to fractionation effects associated with biodegradation or
physical processes (e.g., diffusion, volatilization, sorption, and
dissolution).261 The differences in isotope signatures between
subsurface sources and indoor-relevant products can be used to
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identify the origin of indoor VOCs.91,143,260 CSIA analysis needs
a relatively large amount of analyte (e.g., > 1 ng of C), but VOC
concentrations in indoor air are relatively low (∼μg/m3).
Adsorbent142,262 and solvent-based263,264 methods have been
developed to concentrate air samples, allowing the use of CSIA
methods for VI investigation.

6. KEY TOPICS FOR FUTURE RESEARCH
Although there have been significant advances in the under-
standing of VI over the past 20 years, knowledge gaps still exist.
These gaps, summarized below, are areas for potential future
research.
Gap 1: Initial VI Pathway Screening. Initial screening of

the VI pathway typically focuses on VOC concentrations in
groundwater and soil gas and separation distance between the
subsurface source and buildings. This screening does not
account for the site-specific role of barriers (e.g., clean water
lens, high moisture soils, biodegradation, building foundation,
and building pressure) in preventing VI at many sites. An
improved understanding of the specific site features that reliably
prevent VI and adequate tools to identify these features early in
the site investigation process have the potential to improve
initial VI pathway screening, particularly for nonpetroleum
VOCs.
Gap 2: Preferential Pathways. The importance of sewers

and utility tunnels as preferential pathways for VOC migration
into buildings has received increased focus in recent years. The
current understanding of transport processes within preferential
pathways is limited compared to conventional VI. Areas where
an improved understanding is needed include: transport
processes inside pipes versus through backfill, transport
processes in the liquid phase versus vapor phase, spatial and
temporal variability within sewer lines and utility tunnels, and
identification of reliable barriers to VOCmigration within sewer
lines and from sewer lines into buildings.
Gap 3: Conceptual Model for VI into Buildings Other

than Single-Family Residences. Building structures and
characteristics significantly affect the susceptibility of buildings
to VI.1 However, most accumulated knowledge on VI has been
obtained from single-family residential houses that are common
in theUS andCanada. For example, 85% of themeasurements in
the USEPA data set used to establish upper-bound attenuation
factors are from single family residences.92 In addition, the two
well-documented VI research sites are a single family
residence121,122,155,229 and a residential duplex.149,220,265,266

The current VI conceptual models, site screening criteria (e.g.,
screening distances, screening concentrations, and attenuation
factors), and VI mathematical models have been developed
almost exclusively based on scenarios involving single-family
residences. Although testing of other building types such as high-
rise apartments, shopping malls, office buildings, industrial
buildings, and specialty buildings (school, hospital, transport
station, and religions) is commonly conducted during VI
investigations, test results have not been compiled into a large
public database and the effect of these buildings on VI processes
and pathways has not been defined (Figure S2).
Gap 4: VI into Underground Structures. The majority of

VI research to date has focused on above ground structures, with
less emphasis on underground or submerged structures.1 These
underground structures are common in the urban cores of large
cities, particularly in Asian and European countries. In these
urban cores, underground structures form the backbone of the
infrastructure of the city (e.g., underground parking garage,

subway stations, and pedestrian and traffic tunnels) and these
underground structures are often located in close proximity to
active or historical industrial sites with subsurface releases. For
cities near coastal areas (e.g., New York, Shanghai, Hong Kong,
Singapore, and Tokyo), the groundwater table is very shallow
(1−3 m), and as a result, many of the underground structures
extend below the groundwater table.1 While these underground
structures typically include engineered barriers or hydraulic
control to minimize groundwater infiltration, the effectiveness of
these controls to prevent vapor intrusion has not been verified.
The close proximity between subsurface VOC sources and
underground structures may enhance the potential for VI, while
the often high ventilation rates and relatively short average
occupancy duration may limit the magnitude of exposure. Many
underground structures are equipped with dedicated ventilation
systems which may, in certain cases, serve as a long-term,
sustainable engineering controls. Additional research is needed
to understand to overall VI risk associated with underground
structures (Figure S2).

Gap 5: Technology Transfer. Much of the improved
understanding and innovative investigation tools are not
routinely utilized for VI investigations and decision-making.
Research is needed to identify the most effective methods to
transfer new knowledge to practitioners (e.g., scientific
publications, classroom training, online training, social media).
Regulatory and consensus-based guidance documents need to
be updated regularly to reflect new knowledge. In addition, the
evaluation and decision-making frameworks should be flexible
enough to support the adoption of innovative approaches as
they are developed and validated.
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