#### SERDP & ESTCP Webinar Series

## Remediation of PFAS Contaminated Groundwater

Michelle Crimi, Ph.D. Clarkson University









## Agenda

- PFAS-contaminated groundwater
  - Treatment challenges
- Remediation approaches
  - Carbon-based sorption
  - Ion exchange
  - Destructive treatment
- Considerations for remedy selection
- Benefits to DoD





## Challenges

- Chemical properties
- Mixtures
  - Can't detect/quantify some PFAS
  - Range of properties
- Precursors →
   Compounds of concern
  - Many can undergo transformation

#### **PFOS**



#### **PFOA**







## **Treatment Options**





## **Treatment Options**

#### Separation

- Filtration
  - Nanofiltration, reverse osmosis
- Coagulation
- Sorption
  - Granular activated carbon (GAC)
  - Carbon nanotubes,
     biomaterials
- Ion exchange
  - o Resins
  - o Polymers, mineral materials

#### Destruction

- Chemical oxidation
- Customized reductants
- Electrochemical
- Photochemical
- Sonolytic
- Plasma

# TREATMENT TRAINS and COMBINED REMEDIES!



## Examples of 2018 SERDP Projects

- Remediation of PFAS
   Contaminated Groundwater
   Using Cationic Hydrophobic
   Polymers as Ultra-High Affinity
   Sorbents
- Regenerable Resin <u>Sorbent</u>
   Technologies with <u>Regenerant</u>
   Solution Recycling for
   Sustainable Treatment of
   PFASs
- Electrically Assisted <u>Sorption</u> and Desorption of PFASs
- Molecular Design of Effective and Versatile <u>Adsorbents</u> for Ex Situ Treatment of AFFF-Impacted Groundwater

- Ex Situ Treatment of PFAS
   Contaminated Groundwater Using
   <u>Ion Exchange with Regeneration</u>
- <u>Electrochemical Oxidation</u> of Perfluoroalkyl Acids in Still Bottoms from Regeneration of <u>Ion Exchange</u> <u>Resins</u>
- Treatment of Legacy and Emerging Fluoroalkyl Contaminants in Groundwater with <u>Integrated</u> <u>Approaches</u>: Rapid and Regenerable Adsorption and UV-Induced Defluorination
- Combined In Situ / Ex Situ
   <u>Treatment Train</u> for Remediation of PFAS Contaminated Groundwater



#### **CARBON-BASED SORPTION**



## Carbon-Based Sorption

- Ex situ pump-and-treat
- In situ injectable
- Large installations and point-of-entry or point-of-use

- Granular or powdered activated carbon
- Clays or blends
- Synthetics



## Carbon-Based Sorption

- Treatability testing essential
- Co-contaminants and precursors compete
- Less effective for small chain compounds
- Hemi-micelle and micelle formation



Granular activated carbon (GAC) reuse

Carbon-based sorption is effective, but challenging to predict





#### ION EXCHANGE





## Ion Exchange

#### Resin Adsorption/Regeneration from Column Testing



Sustainable Removal of Poly- and Perfluorinated Alkyl Substances (PFAS) from Groundwater Using Synthetic Media





## Ion Exchange

#### Volume Treated Before Breakthrough



Resin outperformed GAC for many, but not all, compounds





#### **REDOX MANIPULATION**

- Plasma
- Sonolysis
- Activated Persulfate
- Electrochemical
- Chemical Reduction
- Combinations





#### Plasma

- Uses electricity to convert water into mixture of highly reactive species
  - OH•, O, H•, HO<sub>2</sub>•, O<sub>2</sub>•-, H<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O<sub>2</sub> and aqueous electrons (e-<sub>aq</sub>)







### Plasma

| Parameter                               | Range for 13 Samples |
|-----------------------------------------|----------------------|
| рН                                      | 5.3 - 8.0            |
| Conductivity (uS/cm)                    | 17.3 - 26,300        |
| Turbidity (NTU)                         | < 1 - 20             |
| Alkalinity, as CaCO <sub>3</sub> (mg/L) | 10 - 550             |
| Hardness, as CaCO <sub>3</sub> (mg/L)   | BD - 1,130           |
| Total organic carbon (mg/L)             | 0.11 - 10.8          |
| Iron (mg/L)                             | BD - 2600            |
| Manganese (mg/L)                        | 8.6 - 5000           |
| ∑acids (mg/L)                           | 0.3 - 500            |
| ∑sulfonates (mg/L)                      | 0.3 - 950            |
| Individual PFAAs (mg/L)                 | 0.003 - 650          |
| Total fluorine (mg-F/L)                 | 98 - 4,900           |





### Plasma



Plasma treats PFAS rapidly, proceeding through short-chain intermediates



## Sonolysis In Situ Sonolytic Reactor for PFAS Treatment



Contaminated water →

Clean water





## Sonolysis



Sonolysis effectively treats PFAS, with potential for in situ application

**Notes**: Values above bars represent treatment time in minutes. Each color represents a different contaminated field site with PFOA (perfluorooctanoic acid) on the left and PFOS (perfluorooctane sulfonate) on the right





## Sonolysis



**Notes**: Each color shows (PFBA, PFBS); PFBA = perfluorobutyrate; PFBS = perfluorobutane sulfonate SERDP & ESTCP Webinar Series (#100)





## Sonolysis

PFBA Degradation in a Spiked Deionized Water System





## Other Approaches

- Electrochemical
- Photochemical
- Reductive
  - Pd<sub>0</sub>/nFe<sub>0</sub> nanoparticles
  - Aqueous electrons

- Oxidative
  - Activated persulfate
  - Ozone
  - Different oxidation approaches → different intermediates and byproducts



## Verifying Complete Destruction of PFAS

| Oxidation Approach                   | Intermediates and Byproducts                                                 |
|--------------------------------------|------------------------------------------------------------------------------|
| Persulfate                           | F <sup>-</sup> , PFPrA, PFHpA, PFHxA, PFPA PFPeA , PFBA,TFA                  |
| UV-Fenton                            | F-, Formic acid, PFPrA, PFHpA, PFHeA, PFPeA, PFBA                            |
| Fe(III)                              | F <sup>-</sup> , PFPrA, PFHpA, PFHeA, PFPeA                                  |
| Ferrates                             | No observed F <sup>-</sup>                                                   |
| Fe(III) and oxalate                  | F-, PFPrA, PFBA, PFPeA, PFHxA, PFHpA                                         |
| Plasma                               | F-, TFA PFPrA, PFBA, PFPeA, PFHxA, PFHpA, PFBS                               |
| UV-Pb-modified TiO <sub>2</sub>      | PFHpA, PFHeA, PFPrA, TFA PFPeA, PFBA                                         |
| Sonolysis                            | PFHpA, PFHxA, PFPA, TFA and F-, PFHpS, PFHxS, PFOA                           |
| Photocatalysis with Inidium oxide    | F-, PFHpA, PFHeA, PFPrA, PFPeA, PFBA                                         |
| TiO <sub>2</sub> photocatalysis      | PFHpA, PFHpA, PFPeA, PFBA                                                    |
| Environmental photolysis             | PFBA, PFBS, PFOA                                                             |
| Electrochemical oxidation            | F-, TFA, PFPA, PFBA, PFPeA, PFHxA, PFHpA                                     |
| Photolysis with persulfate           | F-,CO <sub>2</sub> , SO <sub>4</sub> <sup>2-</sup> PFBA, PFPeA, PFHxA, PFHpA |
| Microwave hydrothermal decomposition | F-,CO <sub>2</sub> , PFBA, PFPeA, PFHxA, PFHpA, PFHeA                        |





#### **Treatment Trains**



Treatment trains can improve treatment efficiency



#### **Treatment Trains**

- Part A: In SituTreatment
  - No treatment
  - Persulfate oxidation
  - Oxygen addition
    - Sparging
    - Slow-release amendment

- Part B: Ex SituTreatment
  - Ion exchange, range of:
    - Regenerant solutions
    - Regenerant separation approaches for reuse
  - Plasma
    - Pumped groundwater, directly
    - lon exchange regenerant residue with concentrated PFAS
    - Pretreated groundwater



## Challenges and Limitations

- Mixtures, precursors, co-contaminants
- Managing materials
- Incomplete mineralization
- Energy intensity
- Technical challenges to in situ treatment
- Limited field-scale examples



## Considerations for Remedy Selection

- Does the approach rely on immobilization?
  - Is immobilization irreversible?
- Does the approach rely on separation?
  - How will separated PFAS be managed longterm?
  - What are the challenges, costs, and risks of the long-term management plan?
  - Can removal efficiency be improved at reasonable cost?



## Considerations for Remedy Selection

- Does the approach rely on destruction?
  - Can you verify destruction with fluoride recovery? Are the compounds truly destroyed?
  - What intermediates or byproducts may form?
  - What impact do precursors have on mass balance?
  - What is the energy cost?
  - What are the implementation challenges?



#### Benefits to DoD

- PFAS-related liabilities > \$2B
  - Full scope still unclear
- Regulations emerge and evolve
  - Need cost effective PFAS treatment approaches
- Work continues to focus on improving the following:
  - Efficiency
  - Effectiveness
  - Permanence of treatment

#### SERDP & ESTCP Webinar Series

## For additional information, please visit

https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/Contaminated-Groundwater/Emerging-Issues/ER18-1306

http://serdp-estcp-pfas.com/pfas\_efforts/pfas\_efforts.pdf

#### **Speaker Contact Information**

mcrimi@clarkson.edu; 315-268-4174

