jodencrantz@tri-s.com

From:	jodencrantz@tri-s.com
Sent:	Tuesday, July 2, 2024 12:39 PM
То:	'Landaverde, Carlos@Waterboards'
Cc:	'Joan Davidson'; 'Susana.Arredondo@waterboards.ca.gov'; 'Dave.Kereazis@dtsc.ca.gov'; 'jrinella@pw.lacounty.gov'; 'jodencrantz@tri-s.com'
Subject:	RE: 2325 Crenshaw Blvd., Torrance Request for Information and Documented Environmental Concerns
Attachments:	2325 Crenshaw Soil Reports 1988 Building and Safety - 027191G.pdf; DTSC Comment Letter-Torrance Del Amo Project_Final_ADA.pdf; pdf 806 of 889 of Phase I Report 2022 Torrance Del Amo Project.pdf
Importance:	High

Dear Mr. Landaverde:

Thank you for your email this morning. I appreciate your interest in obtaining addition information regarding subsurface contamination (potentially hazardous) at the subject site that may be impacting the waters of the State of California. As a licensed Professional Civil Engineer in the State of California, safeguarding life, health, property, and public welfare is my primary concern. I have responded to your request for documents in parts 1) and 2) below.

1) Please find attached a 104-page document that constitutes the 1988 Grading Permit for 2325 Crenshaw Blvd, Torrance and all the supporting documents.

Pdf Range 73-101 is the November 16, 1987 LeRoy Crandall Report entitled "Report of Foundation Investigation"

Pdf 78 is Page 3 of the LeRoy Crandall report which states "Petroleum were noted at random depths in Boring 4. Tests to determine the extent and type of any hazardous materials beneath the site were not within the scope of this investigation."

Pdf 91 is The Log of Boring 4 dated October 16, 1987 states "Petroleum stain and odor at random depths from 2-1/2 feet to 18 feet" below the surface. Water seepage was noted at 14 feet below the surface in Boring 4. JEO Note: It is possible the water seepage noted at 14 feet below the surface came into contact with the petroleum stain/odor at a depth of 18 feet below the surface possibly exacerbating the extent of contamination.

Pdf 94 is the Log of Boring 7 in which Petroleum Odor is noted at five feet below the surface.

Pdf 95 is the Log of Boring 8 in which Oil Stain is noted at five feet below the surface.

2) I have attached a Department of Toxic Substances and Control (DTSC) letter dated February 23, 2024 addressed to Mr. Peerapol Suree of the City of Torrance in which the author recommends "a proper evaluation of the Project is completed". There are active links in the February 23, 2024 DTSC letter authored by Environmental Planner Mr. Dave Kereazis and is attached.

It is also noted in the attached 2/23/24 DTSC Letter on Page 1:

In July 2022, a Phase I Environmental Site Assessment (ESA) was prepared for the project by GEOCON West, Inc. The ESA identified past petroleum production at the site in addition to above-ground storage tanks, an oil derrick and well, and apparent waste oil and water ponds in addition to other recognized environmental concerns. All of these were reported

to be contaminated by "disposal surface impoundment". There are no records of any cleanup activities or oversight therefore, a Soil Management Plan (SMP) was recommended by GEOCON West, Inc. as noted in the Initial Study Mitigation Measure HAZ-1.

I will supply any additional information you may request. Here is a link to the City of Torrance Del Amo Project Environmental documents>

https://www.torranceca.gov/our-city/community-development/planning-division/reports-land-usestudies/environmental-documents/torrance-del-amo-project

You will find the July 2022 Phase I Environmental Site Assessment referenced above at Appendix F. I have also attached pdf 806 of 889 from the Phase I which is an aerial photograph from <u>1928 that shows the waste lagoon, four above-</u> ground storage tanks and an oil derrick within the subject site boundaries.

If you would like to have a meeting, I would be more than happy to make time for you. It my hope that you will compel the City of Torrance to investigate the subject site to ensure that are no soil, soil vapor or groundwater impacts from former above-ground storage tanks, an oil derrick and well, apparent waste oil and water ponds, disposal surface impoundment, and petroleum production at the subject site.

Respectfully yours,

Joseph E. Odencrantz, Ph.D., BCEE, PH, PE

Joe Odencrantz, Ph.D., P.E., BCEE, PH Board Certified Environmental Engineer (Site Remediation) Professional Hydrologist (Groundwater) California Licensed Professional Civil Engineer Editorial Board Member of REMEDIATION (Environmental Management Journal-Wiley) Tri-S Environmental Newport Beach, California mobile (949) 698-8851 email jodencrantz@tri-s.com web https://tri-s.com LinkedIn https://www.linkedin.com/in/josephodencrantz/ Tri-S Environmental is Celebrating 29 years in Business-Since 1994

"One World, One Environment"

CONFIDENTIALITY NOTICE:

THE INFORMATION CONTAINED IN THIS E-MAIL MESSAGE IS INTENDED ONLY FOR THE PERSONAL AND CONFIDENTIAL USE OF THE DESIGNATED RECIPIENT(S) NAMED ABOVE. IF THE READER OF THIS MESSAGE IS NOT THE INTENDED RECIPIENT OR ANY AGENT RESPONSIBLE FOR DELIVERING IT TO THE INTENDED RECIPIENT, YOU ARE HEREBY NOTIFIED THAT YOU HAVE RECEIVED THIS MESSAGE IN ERROR AND THAT ANY REVIEW, DISSEMINATION, DISTRIBUTION, OR COPYING OF THIS MESSAGE IS STRICTLY PROHIBITED. IF YOU HAVE RECEIVED THIS COMMUNICATION IN ERROR, PLEASE NOTIFY ME IMMEDIATELY BY REPLYING TO THE MESSAGE AND DELETE THE ENTIRE MESSAGE FROM YOUR E-MAIL SYSTEM WITHOUT PRINTING ANY COPIES OR FORWARDING TO ANYONE. THANK YOU.

From: Landaverde, Carlos@Waterboards <Carlos.Landaverde@Waterboards.ca.gov>
Sent: Tuesday, July 2, 2024 8:54 AM
To: jodencrantz@tri-s.com
Subject: 2325 Crenshaw Blvd., Torrance

Hello Mr. Odencrantz,

I am writing to you to ask if you have any other information regarding the address site above. I have a copy of the PDF addressed to Mr. Sullivan, City Attorney of Torrance Attorney's Office, but if you have other PDFs regarding

site history or any environmental documents regarding the address site above, it would be great to get a copy of any PDFs that you may have with you.

Thank you,

Carlos M. Landaverde, P.G. Engineering Geologist Los Angeles Regional Water Quality Control Board Site Cleanup Program Unit IV 320 West 4th Street, Suite 200 Los Angeles, CA 90013 D: 213-620-6070

DEPARTMENT of BUILDING & SAFETY DATE - 88 ISSUED BY CITY OF TORRANCE ىر Ken 1. GRADING PERMIT SOIL TYPE N PRELIM. SOIL REPORT DATE RECEIVED S.D FOR APPLICANT TO FILL IN JOB Blud 2325 RENSHAW DESCRIPTION OF WORK TO BE DONE TORRANKE 44299 MAXIMUM DEPTH OF FILL MAXIMUM DEPTH OF CUT PARCEL of MAP No. 19013 ESTIMATED CU. YDS. OF FILL 2100 CUT 3500 51-12 TEL 818-307-2504 OWNER SO. GAS CO PURPOSE ADDRESS 3204 No. ROSCMEAD 245,700 OF WORK EL MONTE, CA PAVE. ARCHITECT OR CHCG MONTCLAIR, CA ADDRESS SOIL TEL 714-625-3924 NO. C4973 TEL. OWNER/BUILDER DECLARATION CITY Section 7031 5 of the California Business and Professions code provides as follows: 7031 5 of the California Business and Professions code provides as follows: "Each county or city which requires the issuance of a permit as a condition precedent to the construction, alteration, improvement, demolition or repair of any building or structure shall also require that each applicant for such a permit file as a condition procedent to the issuance of a permit a statement which he has prepared and signed stating that the applicant is licensed under the provisions of this chapter, giving the number of his license and stating that it is in full force and effect, or, if the appli-cant is exempt from the provisions of this chapter, the basis of the alleged exemption. Any violation of this section by any applicant for a permit shall be subject to a civil penalty of not more than five hundred dollars (\$500.00)." GEOLOGIST TEL. CITY REMARKS I, as owner of the property, or my employees with wages as their sole compensation, will do the work, and the structure is not intended or offered for sale. (Section 7044, Business and Professions code: The contractor's license law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his employees, pro-vided that such improvements are not intended or offered for sale. If, however, the building or improvemnts is sold within one year of completion, the owner builder will have the burden of proving that he did not build or improve for the purpose of sale.) The project. (Section 7044 of the Business and Professions code: The contractor's license law does not apply to an owner of property who builds or improves thereon, and who contracts for such projects with a contractor(s) licensed pursuant to the contractor's license law.) I, as owner, am exempt under section _ __ B and P code, for the reason:__ ulen 01 PLAN. DEPT. (Signature) aun FEES LICENSED CONTRACTOR'S DECLARATION I hereby declare that I am licensed under the provisions of Chapter 9 (commencing at sec-tion 7000) of Division 3 of the Business and Professions code, and my license is in full force and effect. PLAN CHECK FEE S 283 GRADING PERMIT FEE 5 798 50481 182199 License Class B No _ City Lic. No. State dic MICROFILM FEE \$ 1 90 OWNER BLDR NOTIF 5 WORK COMP. REVIEW 5 3 Print Name and Address of Contractor CONSTRUCTION INC 10 BERRY SOIL REPORT REVIEW 5 32 1921 W. ULAND, CA Phone 714-985-966 TOTAL s WORKER'S COMPENSATION DECLARATION CORRECTIONS OR COMMENTS have a certificate of consent to self insure, or a certificate of nsurance, or a certified copy thereof (Labor Code Section 3800). hereby declare that I 80254537 FUND INS. CO. Company FIREMANS A certified copy is hereby furnished. ON FILE CERTIFICATE OF EXEMPTION FROM WORKER'S COMPENSATION INSURANCE (This section need not be completed if the permit is for one hundred dollars (\$100.00) or less) I certify ihat in the performance of the work for which this permit is issued I shall not employ any person in any manner so as to become subject to the Worker's Compensation laws of the State of California. NO GRADING WORK SHALL BE DONE WITHOUT NOTIFYING THE GRADING INSPECTOR AT LEAST ONE DAY IN ADVANCE (Signature) (Date) NOTICE TO APPLICANT: If after making this certificate of exemption, you should become subject to the Worker's Compensation laws of the Labor Code, you must forthwith comply with such provisions or this permit shall be deemed revoked. FINAL APPROVAL DATE -26-89 COMPACTION DATE SOIL AGENCY CONSTRUCTION LENDING AGENCY I hereby affirm that there is a construction lending agency for the performance of the work for which this permit is issued (Section 2007 California Civil Code). Lender's Name: _ REVIEW FOR RELEASE DATE 1719 Address: ____ RIGHT OF ENTRY I certify that I have read this application and state that the appre information is correct. laws relating to building construction, and hereby authorize representatives of the thy are rect. I agree to comply with all City and applicable County ordinances, the enter yoon the above mentioned property for the purpose of inspections and State (Signature) (Dete)

ە بەدە بىكى ۋ

BAILTH-FAHGEY COMPANY

The Full Service Independent Testing Laboratory, Euroldiahad sway

yts Frank Weshington Newton and Ise Angelon California unges (221) pepgass Pan (221) gabi yesh Hunders Date Shapmand, Bidg. 214 P.13. Data Morran San Francisco, California 192101 (e13) Act-Ada Pet California Pet-Ada

3148 Q Ene La Patrie Asonie Andrein, Culifoniu getion 1714 Asia dorn Fex (214) Asia see

August 19, 1988

BECO File No. 17805

Bouthern California Gas Company P.O. Box 3249, Terminal Annex Los Angeles, California 90051

Attention: Ms. Barbara Effenberger, P.E. ML 730A

> Footing Excavations Proposed South Coastal Division Headquarters Building Crenshaw and Sepulveda Boulevards Torrance, California

Madam:

Smith-Emery Company is the Geotechnical Engineer of Record and presently providing soil inspection on the subject project. We were asked to write this letter to provide clarification regarding the compacted fill at the bottom of footing inorder to provide proper support. We understand there should be at least three (3) feet of compacted fill and/or equivalent, at the contractor's option they can use two (2) or three (3) sack lean concrete.

Footing excavations that fall short on the required depth of compacted fill will be excavated. The footing shall be placed such that a line drawn downward at a 45 degree angle from the edge of the footing will intersect the compacted fill.

Prior to placing of fill soils or lean concrets, the bottom of the excavation shall be inspected and approved by Smith-Emery Company.

If you have any question regarding this letter, please feel free to call us.

Respectfully submitted,

SMITH - EMERY COMPANY

Ref Hujana	Rad	Hujana	for
RAF HUTALLA	APPROVED INT		1
Froject Engineer	EXCEPT AS NOTED, FOR STRUCTURAL DESCRIPT	President	493
RH/cc	REQUIREMENTS ONLY. NOT RESPONSIBLE FOR ERECTION DIMENSIONS OR QUANTITIES.		
	THOMPSON AND LABRIE		
	BY/6. Manue DATE 5-19-88		

ALL REPORTS AND SUDMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AUTHORIZATION FOR PUBLICATION OF OUR REPORTS, CONCLUSIONS, OR FX -TRAOTS FROM OF REGARDING THEMIS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS. THE PUBLIC AND OURSE VES.

1

SOUTH COAST DIVISION HEA	DQUARTERS
APPROVED BY:	DRAWN BY RWG
	REVISED
CALIFORNIA GAS COMPA	S.E. Ca. FILE No. 17805
IERY COMPANY	DRAWING NUMBER

•279 DENSITY TEST LOCATION STORM DRAIN TRENCH BACKFILL FIRE WATER TRENCH BACKFILL SEWER TRENCH BACKFILL LIMITS OF COMPACTED FILL

LEGEND

781 Fast Washington Bodecard Los Angeles, California (1992) (213) 749 3411 Fax (213) 746 7228 Hunters Point Shiphard, Bidg. 114 P.O. Box 880550 San Francisco, California 04188 (415) 822-8886 Far (415) 822-8864 3748 Q East La Palma Arenue Anakem, California 52805 (714) 530 4930 Fax (714) 532-1741

June 21, 1988

Southern California Gas Company Accounts Payable P.O. Box 3249 Terminal Annex MC 732A Los Angeles, California 90051

Attention: Mr. Jerry Ellis

Letter of Responsibility Proposed South Costal Division Headquarters Building Crenshaw and Sepulveda Boulevards <u>Torrance, California</u>

Gentlemen:

INTRODUCTION

In accordance with your request, Smith-Emery Company is pleased to accept the responsibility of "Geotechnical Engineer of Record" for the subject project. We have reviewed the preliminary soils exploration report entitled:

> "Report of Foundation Investigation Proposed South Costal Division Headquarters Building Crenshaw Boulevard and Sepulveda Boulevard Torrance, California For the Southern California Gas Company" Prepared by LeRoy Crandall & Associates Job No. A-87413 dated November 16, 1987

We are in general agreement with the recommendations outlined in the report and are prepared to observe the construction of the project in accordance with the plans and specifications and provide ongoing geotechnical consultation. We understand that there is a rough grading report in preparation by LeRoy Crandall & Associates. In order to undertake our scope of work we need a copy of that report as soon as it's available.

. .

ŧ

We Appreciate the opportunity to be of service to you. If you have any questions regarding the contents of this letter, please contact us.

Respectfully submitted,

SMITH - EMERY COMPANY

متر مع

LUTZ KUNZE, R.G.E. 493 Vice President

cc: Berry Construction Inc. 1921 West Eleventh Street Upland, California 91786-3599 Attn: Mr. Brent McMurray

> City of Torrance 3031 Torrance Boulevard Torrance, California 90509-2970 Attn: Mr. Jim Sheldon

LeRoy Crandall & Associates P.O. Box 25088 900 Grand Central Avenue Glendale, California 91201-3009 DEPT. OF BUILDING AND CAFETY CITY OF AURRANCE

88 JUN 23 AII: 06

Charles and Charles and Charles

SECo File No. 17805 SECo Report No. G-89-5676

Southern California Gas Company Property & Space Management Section M/L 732A Post Office Box 3749 Los Angeles, California 90051

Attention: Mr. Jerry Ellis

REPORT OF COMPACTED FILL Coastal Division Headquarters Building Crenshaw and Sepulveda Boulevard <u>Torrance, California</u>

Gentlemen:

INTRODUCTION

Smith-Emery Company is pleased to present this report on the observation and inspection of compacted fill of the proposed headquarters building utility trench backfill and parking lot fine grading. Smith-Emery Company has witnessed the over-excavation and backfill placement and compaction of fill soils from June 22, 1988 to May 12, 1989. Our observations are based on the report entitled:

781 East Washington Boulevard Los Angeles, California 90021 (213) 749-3411 Fax (213) 746-7228 Hunters Point Shipyard, Bldg. 114 P.O. Box 880550 San Francisco, California 04188 (415) 822-8880 Fax (415) 822-5864

5427 East La Palma Avenue Anaheim, California 92807 (714) 693-1026 Fax (714) 693-1034

ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AUTHORIZATION FOR PUBLICATION OF OUR REPORTS, CONCLUSIONS, OR EX-TRACTS FROM OR REGARDING THEM IS RESERVED PENDING OUR WRITTEN APPROVAL AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC AND OURSELVES.

and a second second

"Report of Foundation Investigation Proposed South Coastal Division Headquarters Building Crenshaw Boulevard and Sepulveda Boulevard Torrance, California"

for

Southern California Gas Company Prepared by LeRoy Crandall and Associates Report No. A-87413 dated November 16, 1987

and

"Interim Report of Compacted Fill Proposed South Coastal Division Headquarters Building Crenshaw Boulevard and Sepulveda Boulevard Torrance, California"

for

Southern California Gas Company Prepared by LeRoy Crandall and Associates Report No. B-88009 dated May 17, 1988

CONSTRUCTION ACTIVITIES

<u>Site Preparation</u>

, the second s

Prior to fill placement, the proposed construction site was stripped of vegetation. The trenches were excavated, pipe installed and the trenches were backfilled as required. The parking lot subgrade was scarified, moisture conditioned and compacted as required. All existing trash, concrete and debris was removed prior to and during the backfill and finish grading operations.

2

• • • • • • • •

·····

SMITH-EMERY COMPANY

Material Types

On-site excavated soils consisted of brown silty sand. Imported fill material used consisted of class II crushed miscellaneous base.

Fill Placement

On-site excavated soils were also placed in six (6) inch to eight (8) inch loose lifts, brought to near optimum moisture content and compacted to the required 90 percent compaction. Imported materials were placed in four (4) to six (6) inch loose lifts, brought to near optimum moisture content and compacted to the required 95 percent of the maximum dry density as determined by ASTM D1557-78 (five-layer method). The equipment used for compaction consisted of handwackers, scraper, blade, backhoe, vibrating plate, vibrating plate with tamper, vibrating plate, skiploader, tamping rammers, powder puff, steel drum roller, water truck, 980 loader and a 966 loader. Density tests were taken in accordance with ASTM D1556-64 (sand cone method). Field density test locations are plotted on Plate A and test results are shown on Table 1. Results of the maximum density and optimum moisture determination of the materials encountered is tabulated on Table 2.

3

SMITH-EMERY COMPANY

CONCLUSIONS

<u>General</u>

All fill placement and compaction was performed in accordance with the City of Torrance, and and Smith-Emery Company specifications.

<u>Conclusion</u>

Our description of the fill operations as well as observations and testing services herein, have been limited to those operations performed on June 22, 1988 thru May 12, 1989. No representation are made as to the quality or extent of the materials not observed. Based upon our observations and testing it is our opinion that the work performed has been accomplished in accordance with the job specifications as well as the requirements of the regulatory agencies. It is our further opinion that the site as graded is suitable for the proposed Southern California Gas Company Coastal Division Headquarters parking lot. This report should be considered subject to review by the controlling authorities.

4

SMITH-EMERY COMPANY

The following tables, plates and certifications are attached and complete this report.

Table 1 - Result of Density Tests Table 2 - Maximum Density/Optimum Moisture Tests Plate A - Plot Plan

Engineer's Certificate of Compliance

Respectfully submitted, SMITH - EMERY COMPANY

RICHARD W. GRANT Field Supervisor

...

-

, معادر ومردور مانيو ه

SECo File No.: 17805 SECo Report No.: G-89-5676

and the second second

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

. ..

.

<u>E</u>	LEVATION	KEY				METHOD	KEY	
SG-Subgrad	e	FSG-	-Finish S	ubgrade	3	SC-Sand	cone	
FG-Finish	Grade	FAB-	-Finish A	gg. Bas	se	NG-Nucl	ear Gauge	
AB-Aggrega	<u>te Base</u>	BTM-	-Bottom			DT-Driv	<u>re Tube</u>	
RESULTS OF	DENSITY	TESTS	5					
Test	Test E	lev.	Moisture	Dry		<u>Relative</u>	Compaction	Soil
No.: Date	Type De	epth	Content	Densi	ity	Field	Specified	Туре
	(1	<u>[t.)</u>	(%)	(p.c.1	<u>f.</u> j	(%)	(%)	
1 6-22	NG	83	9	106		93	90	1
LOCATION:	BUILDING	G PAD	BACKFILL	10' N	4' E	BUILDING	LINE	
2 6-22	NG	83	9	105		93	90	1
LOCATION:	BUILDING	G PAD	BACKFILL	4' OF	CENT	ER E BUII	DING LINE	
3 6-22	NG	83	8	105		92	90	1
LOCATION:	BUILDING	G PAD	BACKFILL	10' S	4' E	/NE CORNE	R BLDG. LI	NE
4 6-22	NG	83	7	106		93	90	1
LOCATION:	BUILDING	G PAD	BACKFILL	NW COR	RNER	OF BUILDI	NG	
5 6- 23	SC	80	9	99		87	90	1
LOCATION:	50' S 63	3′W 1	FROM SW C	ORNER,	TEST	FAILED		
6 6 - 23	SC	83	6	102		89	90	1
LOCATION:	15' E 40)'N,	TEST FAI	LED				
7 6-23	SC	79	11	113		99	90	1
LOCATION:	RETEST (OF TES	ST NO. 5					
8 6-23	SC	83	7	107		94	90	1
LOCATION:	RETEST (OF TES	ST NO. 6					
9 6-23	SC	83	9	103		90	90	1
LOCATION:	15' E 6'	'S FI	ROM NE CO	RNER				
10 9-1	NG ·	-3.5	10.7	108.3		95	90	1
LOCATION:	SEWERLI	IE TRI	ENCH SOUT	H 5' E/	AST O	F EAST CI	EANOUT	
. .		_						
11 9-1	SC -	-3.5	11.1	114.8		100	90	1
LOCATION:	SEWERLI	IE TRE	ENCH SOUT	H 20' V	VEST	OF WEST C	LEANOUT	
12 9-1	SC	-2	11.0	112.2		98	90	1
LOCATION:	SEWERLI	IE TRI	ENCH SOUT	H BETWI	EEN C	LEANOUTS		
				<u> </u>				
SMITH-EMER	Y COMPANY	(- LC	DS ANGELE	S				
TABLE 1								

...

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATION	KEY		-	METHOD	KEY	
SG-Subgrade	9	FSG-	Finish S	ubgrade	SC-Sand	lcone	
FG-Finish (Grade	FAB-	Finish A	gg. Base	NG-Nucl	.ear Gauge	
AB-Aggregat	<u>ce Base</u>	<u>BTM-</u>	Bottom		<u>DT-Driv</u>	<u>re Tube</u>	
RESULTS OF	DENSITY	TESTS					
Test	Test E	lev.	Moisture	Dry	<u>Relative</u>	<u>Compaction</u>	Soil
No.: Date	Type D	epth	Content	Density	Field	Specified	Туре
	(<u>ft.)</u>	<u>(%)</u>	(p.c.f.)	(%)	(%)	
13 9-1	NG	-3.5	11.1	113.8	99	90	1
LOCATION:	SEWERLI	NE TRE	NCH WEST	20' SOUTH	OF SOUTH	CLEANOUT	
		~ ~					
14 9-1 1000 TON:	NG	SG	10.4	112.9	99	90	1
LOCATION:	SEWERLI	NE TRE	NCH SOUT	H 30' EAST	OF WEST E	ND	
15 9-1	NG	SG	10.2	110.5	97	90	1
LOCATION:	SEWERLI	NE TRE	NCH SOUT	H 10' WEST	OF EAST C	LEANOUT	
16 9-1	NG -	1.75	11.1	115.3	100+	90	1
LOCATION:	SEWERLI	NE TRE	NCH WEST	25' NORTH	OF CLEANC	UT	
17 0 1	NO						_
	NG	-1.5 ND DD7	11.2	112.4	99	90	1
LUCATION:	SEWERLI	NE TRE	NCH WEST	40' NORTH	OF SOUTH	END	
10 0	NC	66	10.0	100 7	~ ~		
	NG CEMEDIT	56 Na moa	10.0	103.7	91	90	1
LUCATION:	SEWERLI	NE TRE	NCH WEST	30° SOUTH	OF NORTH	END	
10 0-6	NC	00	10.4	107 4	~ ^		-
	NG	36 NE 000	10.4	107.4	94	90	1
LUCATION:	SEWERLI	NE TRE	NCH WEST	15' NORTH	OF ETROM		
20 0 12	<u></u>	0.1					-
	SC			110.5	100	90	2
LUCATION:	FOOTING	BACKF	TTP SOOL	HEAST OF FO	JOTING D6-	5.4	
21 0-12	60	01	10.0	100 7		• •	-
	SC ECOMTNO	01 DACKE		109.7		- 90	1
LOCATION:	FOOTING	BACKF	ILL NORT	HWEST OF FO	DOTING D6-	·5.4	
22 0-12	60	0.1	7 0	100 0	~~	<u>.</u>	•
	5C FOOTING	O1 DXOVE		108.8 TD300 R000	99 Dia Do F 4	90	2
LOCATION:	FOOTING	DACKI	ILL SOUT	HEAST FOOT.	LNG D2-5.4	*	
22 0-12	80	01	6 4	100 4	100	0.0	~
	FOOTING	DYORE	D.4 TTT NODE	109.4 WWECE OF D		90	2
LOCATION:	FOOTING	DACKI	TTT NORT	HWEST OF FO	JOTING D2-	·ɔ.4	
24 0-12	NC	01	10 0		0.0		-
	FOOTING	02		LLL.4	98 2000 TN 2 7 2	90	Ŧ
TOCALION:	FOOTING	DACKF	TTT NOKL	REAST OF FO	JUTING $F=6$.5	
CMTOU ENERS	7 0010011	V 70	O ANGULT	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
SMITTO-EMEK)	COMPAN	I – TO	S ANGELE	D			
TYDPE T			-				

· · · .

.

.

• •.

.

-

SECo File No.: 17805 SECo Report No.: G-89-5676

•

- -

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

<u>E</u>]	LEVATION	KEY			METH	OD KEY	Z	
SG-Subgrade	e	FSG-	Finish	Subgrade	SC-S	andcor	ne	
FG-Finish (Grade	FAB-	Finish	Agg. Base	NG-N	uclear	Gauge	
<u>AB-Aggregat</u>	<u>te Base</u>	BTM-	Bottom		DT-D	rive]	<u>l'ube</u>	
RESULTS OF	DENSITY	TESTS	-					
Test	Test El	.ev.	Moistur	e Dry	<u>Relati</u>	ve Con	paction	Soil
No.: Date	Type De	epth	Content	: Density	/ Fiel	d Spe	cified	Type
	(f	<u>it.)</u>	<u>(%)</u>	<u>(p.c.f.</u>)	(%)	((%)	
25 9-12	NG	82	8.6	111.5	98		90	1
LOCATION:	FOOTING	BACKF	ILL SOU	THWEST OF	FOOTING	F-6.5		_
26 9-12	NG	82	6.7	113.3	99		90	1
LOCATION:	FOOTING	BACKF	ILL NOF	THEAST OF	FOOTING	F = 7.4		-
27 9-12	NG	82	9.5	110.2	97		90	1
LOCATION:	FOOTING	BACKF	ILL SOU	THWEST OF	FOOTING	F-7.4	50	-
					1001100	- / • -		
28 9-12	NG FSG-	1.5	8.1	107.4	98		90	2
LOCATION:	STORM DR	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RENCH F	ACKETLL S	OF BLDG			2 תואק
					OI DIDG	FAD JU		SND
29 9-12	NG FSG-	1.5	9.9	111 2	100+		00	2
LOCATION	STORM DR	ית אדמי	DENCU E	ACVETT C	OF PIDC			
2001120110	Dioidi Di			NCULID 2	OF BLDG	PAD 50	W OF 1	UND
30 9-13	NG FSC-	15	6 1	112 /	00		00	-
LOCATION		1.J NTN T	DENCU W	LT2.4	עע ע 100 חגר		90	T
DOCATION.	STORE DR	ATN 1	KENCH W	OL PTDC F	AD 30' N	OF S	END	
31 0-12	NC ESC.	1 5	= 7	114 C	100			_
	CTODM DD	TTN N	3. /	114.5		· · -	90	1
LOCATION:	STORM DR	CAIN W	OF BLL	G PAD LATE	SRAL LINE	3' E	OF MAIN	TRENCH
22 0-12	NG BGG							
	NG FSG-	C.L.	6.6	113.6	99		90	1
LOCATION:	WEST OF	BOILD	ING PAL	STORM DRA	AIN 20' N	OF LI	NE	
	No 500	<u> </u>						
33 9-13	NG FSG-	2.5	6.8	109.1	96		90	1
LOCATION:	WEST STO	ORM DR	AIN 20'	NORTH OF	SOUTH EN	D		
•• • ••								
34 9-13	NG FSG-	2.5	7.5	112.1	98		90	1
LOCATION:	WEST STO	RM DR	AIN 150	' NORTH OF	F SOUTH E	ND		
35 9-14	NG	FSG	7.1	106.2	93		90	1
LOCATION:	STORM DR	AIN T	RENCH B	ACKFILL W	OF BLDG	PAD N	END	
36 9-14	NG	FSG	9.5	104.0	9 1		90	1
LOCATION:	STORM DR	AIN W	EST OF	BUILDING F	PAD SOUTH	END		-
<u></u>			• -					
SMITH-EMERY	COMPANY	- LO	S ANGEL	ES				
TABLE 1				' .				

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATIC	<u>DN KEY</u>			METHOD	KEY	
SG-Subgrade	Э	FSG-	Finish	Subgrade	SC-Sand	lcone	
FG-Finish (Grade	FAB-	Finish	Agg. Base	NG-Nuc]	lear Gauge	
AB-Aggregat	<u>te Base</u>	<u>∋ BTM-</u>	<u>Bottom</u>		<u> </u>	<u>re Tube</u>	
RESULTS OF	DENSIT	TESTS					
Test	Test	Elev.	Moistur	e Dry	<u>Relative</u>	<u>Compaction</u>	Soil
No.: Date	Туре	Depth	Content	Density	Field	Specified	Туре
		(ft.)	(%)	<u>(p.c.f.)</u>	<u>(%)</u>	(%)	·
37 9-14	NG	FSG	10.1	102.6	90	90	1
LOCATION:	STORM	DRAIN S	SOUTH OF	BUILDING F	AD EAST EN	1D	
~~ ~ ~ ~ ~							
38 9-15	NG	FG-6	13.6	105.4	92	90	1
LOCATION:	SEWERI	JINE TIE	IN BAC	KFILL			
	110	_					
39 9-15	NG	-5	8.6	110.0	96	90	1
LUCATION:	SEWERI	JINE TIF	IN BAC	KFILL			
40 0 15	NC						
40 9-10	NG	-4 TND DTT	11.3	105.9	93	90	1
LOCATION:	SEWERI	JINE TIE	IN BAC	KFILL			
41 0-15	NC	2	10 7	100 0			
	NG	-3 		109.2	96	90	1
LOCALION:	SEWERI	THE LIE	IN BAC	KFTTP			
42 0-15	NC	2	10.0	100 1		• •	
	NG	-2 TNP 0115	10.9 TN D20	109.1	96	90	1
LUCATION:	SEWERI	THE LIE	IN BAC	KFILL			
12 0-16	80	EC 1	10.1	100 4		• •	-
	SEWEDI	FG-1 TNE MDE			- 95	90	1
LOCATION:	SCWERL	JINE TRE	NCH TIE	IN BACKFIL	ىلەر		
11 9-16	80	RC.	12.0	100.0	<u></u>	~ ~	
	CEMEDI	гс тыр пре	13.9 NCH 111	TN DACKETT	94	90	1
DOCATION.	SEWERI	JINC IKE	NCH TIE	IN BACKFIL	L)		
45 9-19	NC	FC-1	E 0	107 2	0.4	0.0	-
	SUILLI	FG-1 FND OF	J.O WFCTFDN		94 N	90	T
DOCATION.	3001H	END OF	WESIERN	STORM DRAL	14		
46 9-20	NC	02	7 0	110 0	0.0	0.0	-
	FOOTIN	OJ IC BACKE	7.0 901/111	TIC.J	98 NG E 7 4	90	T
DOCATION.	TOOTIN	G DACKI	TTT NOK	In or room	NG F-7.4		
47 9-20	NG	83	1 0	107 6	04	0.0	1
LOCATION	FOOTIN	IC BACKE		107.0 TU OF FOOMT	94 NC E-7 4	90	T
Looni ton.	100110	G DACKI	100 200	In OF FOOT	NG 1-7.4		
48 9-21	NC	77 5	10 1	110 5	07	0.0	-
LOCATION	ምእፍጥ ሰ		NC #3 0	× ΤΤΛ°Ο	97	90	T
POCULION.	PUDI (T LOOIL	.ng #A.9	MI 0.2			
SMITH-EMERY			S ANCET	FC			
TABLE 1							

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

> n Treat in the

E	LEVATION KEY			METHOD	KEY	
SG-Subgrade	e FSG	-Finish S	ubgrade	SC-Sand	lcone	
FG-Finish (Grade FAB	-Finish A	gg. Base	NG-Nuc]	.ear Gauge	
AB-Aggregat	<u>te Base BTM</u>	<u>-Bottom</u>		<u>DT-Driv</u>	<u>ve Tube</u>	
RESULTS OF	DENSITY TEST	S				
Test	Test Elev.	Moisture	Dry	<u>Relative</u>	<u>Compaction</u>	Soil
No.: Date	Type Depth	Content	Density	Field	Specified	Туре
	(ft.)_	(%)	<u>(p.c.f.)</u>	(%)	(%)	
49 9-22 LOCATION:	NG BTM-1.5 FOOTING #6 A	7.4 T A.9	106.5	93	90	1
50 9-22 LOCATION:	NG BTM.2 FOOTING #7.4	9.0 AT C.7	102.3	90	90	1
51 9-22 LOCATION:	NG BTM FOOTING #6 A	7.6 T A.9	105.9	93	90	1
52 9-22 LOCATION:	NG BTM-1 FOOTING #7.4	7.7 AT C.7	110.2	97	90	1.
53 9-22 LOCATION:	NG FG WEST STORM D	8.4 RAIN BACK	107.8 FILL SOUTH	95 END	90	1
54 9-22 LOCATION:	NG 79.5 WEST OF FOOT	9.5 ING 6.7 A	99.6 F A.9, TEST	87 F FAILED	90	1
55 9-22 LOCATION:	NG 79.5 RETEST OF TE	9.2 ST NO. 54	106.8	94	90	1
56 9-22 LOCATION:	NG BTM FOOTING #7.4	7.9 AT C.7	107.6	94	90	1
57 9-23 LOCATION:	SC FG.3 STORM DRAIN	9.5 EAST/WEST	109.4 TRENCH BAC	96 CKFILL CEN	90 ITER	1
58 9-23 LOCATION:	SCFTB/BTM+4 SOUTHEAST OF	9.3 FOOTING	109.4 #6.7 AT A.9	96	90	1
59 9-23 LOCATION:	SC FG-1.75 STORM DRAIN	11.1 NORTH/SOU	111.6 TH TRENCH H	98 BACKFILL C	90 Enter	1
60 9-23 LOCATION:	NG FG-1.25 STORM DRAIN	10.7 EAST/WEST	107.4 TRENCH BAC	94 CKFILL EAS	90 T END	1
SMITH-EMERY TABLE 1	COMPANY - L	OS ANGELE:	S			

 $\frac{1}{2} = -\frac{1}{2} \left[\frac{1}{2} + \frac{$

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	EVATION I	КЕҮ		METHOD	<u>KE</u> Y	
SG-Subgrade	3	FSG-Finish	Subgrade	SC-Sand	cone	· · · · · · · · · · · · · · · · · · ·
FG-Finish (Grade	FAB-Finish	Agg. Base	NG-Nucl	ear Gauge	
<u>AB-Aggregat</u>	<u>e Base</u>	BTM-Bottom		DT-Driv	e Tube	
RESULTS OF	DENSITY 7	<u>TESTS</u>				
Test	Test Ele	ev. Moistur	e Dry	<u>Relative</u>	Compaction	Soil
No.: Date	Type Dep	oth Content	Density	Field	Specified	Туре
	<u>(f</u> 1	t.) (%)	<u>(p.c.f.)</u>	(%)	(%)	
61 9 - 23	NG	FG 10.1	109.4	96	90	1
LOCATION:	STORM DRA	AIN EAST/WES	T TRENCH W	EST CENTRAL	AREA	
62 9-23	NG	FG 12.3	108.5	95	90	1
LOCATION:	STORM DRA	AIN NORTH/SC	UTH TRENCH	NORTH END		
63 9-23	NG FG-2	2.5 11.7	104.0	91	90	1
LOCATION:	ELECTRICA	AL VAULT TRE	NCH TO TRAD	NSFORMER SO	UTH CENTRAL	. –
						-
64 9-23	NG	FG 8.5	111.5	98	90	1
LOCATION:	STORM DRA	AIN EAST/WES	T TRENCH E	AST END	20	-
		,				
65 9-26	NG BTT	vi+1 11.1	106.9	94	90	1
LOCATION:	SOUTH OF	FOOTING 0.1	AT C 5	24	50	T
		10011.00 0.1	. mi 0.5			
66 9-26	NG BTN	vĩ∔2 12 1	102 2	05	0.0	7
LOCATION	NORTH OF	FOOTING 0 1		90	90	1
DOCATION.	NORTH OF	FOOTING U.I	AI C.5			
67 9-26		ví⊥o 11 o	102 6	0.0		-
	NODUR OF			90	90	1
DOCATION.	NORTH OF	FOOTING 0.1	AI C.Z			
69 0-27			104 0			_
			104.0	91	90	1
LOCATION:	LAST OF 1	FOOTING 0.1	AT C.2			
CO 0 07						
69 9-27	NG TOP	-2 11.9	108.9	95	90	1
LOCATION:	BETWEEN H	OOTING D7 A	T 0.1 AND 1	E.3 AT D.1		
70 9-28	SC J	FOF 8.1	109.2	96	90	1
LOCATION:	BETWEEN H	FOOTING LINE	E.3 0.1 A	ND 1.1		
71 9-28	SC]	FOF 10.2	110.4	97	90	1
LOCATION:	EAST OF H	FOOTING E.3	#0.1			
			1			
72 9 - 28	SC]	OF 12.8	107.3	94	90	1
LOCATION:	SOUTH OF	FOOTING C.7	#0.1			—
		··· .	· .			
SMITH-EMERY	COMPANY	- LOS ANGEL	ES			
TARLE 1			1			

and the second second

÷...

TABLE 1

•

. . .

.

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

EI	LEVATION KE	Y		METHOD	KEY	
SG-Subgrade	e F	SG-Finish	Subgrade	SC-Sand	lcone	
FG-Finish (Grade F	AB-Finish	Agg. Base	NG-Nuc]	.ear Gauge	
<u>AB-Aggregat</u>	<u>e Base – B</u>	<u>TM-Bottom</u>		<u>DT-Driv</u>	<u>re Tube</u>	
RESULTS OF	DENSITY TE	<u>STS</u>				
Test	Test Elev	. Moistur	e Dry	<u>Relative</u>	Compaction	Soil
No.: Date	Type Dept	h Content	: Density	Field	Specified	Туре
	<u>(ft.</u>) (%)	<u>(p.c.f.)</u>	(%)	(%)	
73 9-28	SC TOF-	2 8.1	109.4	96	90	1
LOCATION:	BETWEEN FO	OTING #0.1	LINE AA.1	AND A.2		
74 9-28	NG SG-1.	5 10.0	107.8	95	90	1
LOCATION:	ELECTRICAL	TRENCH AT	CURB			
75 9-29	NG TOF-1.2	5 11.3	105.7	93	90	1
LOCATION:	BETWEEN FO	OTING LINE	AA.1 AND :	#3.4 23.7		
76 9-29	NG TO	F 8.4	105.2	92	90	1
LOCATION:	LINE A AT	0.1				
77 9 - 29	NG TOF-1.	5 11.7	106.8	94	90	1
LOCATION:	LINE G.9 B	ETWEEN # 7	' AND 7.9			
78 9-29	NG FS	G 6.6	107.4	94	90	1
LOCATION:	ELECTRICAL	SERVICE 1	RENCH IN PA	ARKING LOT		
79 9-29	NG FSG-	2 15.0	102.1	90	90	1
LOCATION:	ELECTRICAL	SERVICE T	RENCH WEST	OF CURB		
80 9-29	NG TO	F 8.6	103.8	91	90	1
LOCATION:	LINE AA.1	WEST OF 3.	4			
81 9-29	NG TO	F 10.2	106.5	93	90	1
LOCATION:	LINE G.9 W	EST OF 7.9)			
82 9-29	NG TOF-1.	5 10.5	110.7	97	90	1
LOCATION:	LINE AA AT	#6				
83 9-30	NG TOF-	1 10.7	108.2	95	90	1
LOCATION:	SOUTH OF F	.6 AT 7.9				
		-	·			
84 9-30	NG TO	F 10.0	106.3	93	90	1
LOCATION:	NORTH OF A	.3 AT 6.2	~ .			
			<u> </u>			
SMITH-EMERY	COMPANY -	LOS ANGEL	ES			<u></u>
TABLE 1			an tat			

a de la composición d

.

-

.

.

.

.

SECo File No.: 17805 SECo Report No.: G-89-5676

. .

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

EI	LEVATION KEY	•	METHOD	KEY	
SG-Subgrade	FSG-Finish S	ubgrade	SC-Sand	cone	
FG-Finish (FAB-Finish A FAB-Finish A	gg. Base	NG-Nucl	ear Gauge	
<u>AB-Aggregat</u>	<u> e Base BTM-Bottom</u>		DT-Driv	e Tube	
<u>RESULTS OF</u> Test No.: Date	DENSITY TESTS Test Elev. Moisture Type Depth Content (ft.) (%)	Dry <u>R</u> e Density (p.c.f.)	elative Field (%)	Compaction Specified (%)	Soil Type
85 9-30 LOCATION:	NG SG 5.7 ELECTRICAL SERVICE TR	104.2 ENCH WEST OF	91 CURB	90	1
86 9-30 LOCATION:	NG SG 9.7 ELECTRICAL SERVICE TR	106.4 ENCH EAST OF	93 VAULT	90	1
87 9-30 LOCATION:	NG TOF 8.0 ON AA EAST OF 5.9	105.8	93	90	1
88 9-30 LOCATION:	NG TOF 10.6 ON 8 NORTH OF F.6	111.3	98	90	1
89 10-3 LOCATION:	NG TOF-1.5 11.6 ON G.9 BETWEEN 4 + 3.	110.9 8	97	90	1
90 10-3 LOCATION:	NG SG 11.6 ELECTRICAL TRENCH 50'	105.5 NORTH OF VAL	92 JLT	90	1
91 10-3 LOCATION:	NG SG 10.5 ELECTRICAL TRENCH 20'	106.3 SOUTH OF TRA	93 ANSFORME	90 R	1
92 10-3 LOCATION:	NG SG 8.2 ELECTRICAL TRENCH 20'	102.3 WEST OF BUI	90 LDING	90	1
93 10-4 LOCATION:	NG TOF 12.0 ON 3.8 BETWEEN 6.9 AN	105.6 D F.7	93	90	1
94 10-4 LOCATION:	NG TOF-1.5 10.8 WEST OF FOOTING AT 3.	107.4 8	94	90	1
95 10-4 LOCATION:	NG TOF-2 10.9 ON B WEST OF 6.2	110.0	96	90	1
96 10-4 LOCATION:	NG TOF 9.8 ON B.3 WEST OF 6.7	106.1	93	90	1
SMITH-EMERY TABLE 1	Y COMPANY - LOS ANGELE	S			

.

.

SECo File No.: 17805 SECo Report No.: G-89-5676

.

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATIC	DN KEY			METHOD	KEY	
SG-Subgrade	е	FSG-	-Finish	Subgrade	SC-Sand	lcone	
FG-Finish (Grade	FAB-	-Finish	Agg. Base	NG-Nuc	lear Gauge	
AB-Aggregat	te Base	BTM-	-Bottom		DT-Driv	ve Tube	
RESULTS OF	DENSIT	Y TESTS	5				
Test	Test	Elev.	Moistur	e Dry	Relative	Compaction	Soil
No.: Date	Type	Depth	Content	: Density	Field	Specified	Type
		(ft.)	(%)	(p.c.f.)	(%)	(%)	- 1 E -
97 10-5	SC	TOF-2	10.1	107.7	94	90	1
LOCATION:	NORTH	OF D AT	г 7				-
					•		
98 10-5	SC	TOF-2	8 9	106 9	94	90	1
LOCATION	NORTH			100.9	24	50	1
DOCATION.	MORIT	OF E.0	AI /.4				
99 10-5	80	шор	° 0	104 0	0.0	0.0	•
	COLIMIT	OF FC 3		104.0	92	90	Ŧ
LOCALION:	3001H	OF EG A	AT 7.4				
100 10 5							_
100 10-5	SC	TOF	9.1	108.4	95	90	1
LOCATION:	SOUTH	OF D A	Ľ 6				
101 10-5	SC	TOF	10.3	112.9	99	90	1
LOCATION:	BETWEE	EN D.2 1	AND D.4	WEST OF 5.4	ļ		
102 10-5	SC	TOF	7.9	106.6	93	90	1
LOCATION:	EAST C)F 3.8 (ON F				
103 10-5	SC S	G-1.5	9.3	109.2	96	90	1
LOCATION:	SOUTHW	VEST TRE	ENCH 5'	EAST OF WES	ST STDE OF	BUTLDING	_
104 10-6	NG	TOF-2	11.3	108.8	95	90	1
LOCATION:	NORTH	OF D=6	11.0	100.0		20	-
Lochiton.	month	OF D 0		۴			
105 10-6	NC	መረድ	12 4	107 6	0.4	0.0	-
	ROUTU		12.4	107.0	94	90	T
LOCATION:	SUUTH	OF D=7					
100 10 0	NG						_
106 10-6	NG	TOF	103.9	10.2	91	90	1
LOCATION:	ON E.S	EAST C	JF 2.1				
107 10-6	NG	TOF-2	12.1	108.8	95	90	1
LOCATION:	ON 5.1	l NORTH	OF B.5	· · · · · ·			
108 10-7	NG	TOF	8.9	109.9	96	90	1
LOCATION:	ON E E	EAST OF	3.8	11 4 1 1 1 1			
			~				
SMITH-EMERY	Y COMPA	NY - LO	DS ANGEI	LES			

TABLE 1

·

· · · ·

.

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E	LEVATION KEY			METHOD	KEY	
SG-Subgrad	e FSG-	Finish Su	ıbgrade	SC-Sand	lcone	
FG-Finish	Grade FAB-	Finish Aq	g. Base	NG-Nuc]	lear Gauge	
<u>AB-Aggrega</u>	<u>te Base BTM-</u>	Bottom		DT-Driv	<u>re Tube</u>	
RESULTS OF	DENSITY TESTS					
Test	Test Elev.	Moisture	Dry	<u>Relative</u>	Compaction	Soil
No.: Date	Type Depth	Content	Density	Field	Specified	Туре
	(ft.)	(%)	(p.c.f.)	<u>(%)</u>	<u>(%)</u>	
109 10-7	NG TOF-2	10.6	112.7	99	90	1
LOCATION:	ON C.3 WEST O	F 5.1				
110 10-7		0 7	107 7		~~	-
	ON E 1 COUTU		10/./	94	90	1
LOCATION:	UN 5.1 SOUTH	OF B.8				
111 10-10	NG TOF	11 /	107 8	0.4	00	•
LOCATION	SOUTH OF B-5	T T • 4	107.0	94	90	T
DOCATION.	booth of B-J					
112 10-10	NG TOF	6.8	107 3	94	90	1
LOCATION:	NORTH OF C-4	0.0	107.5	54	90	T
113 10-10	NG TOF	7.1	106 4	63	90	7
LOCATION:	NORTH OF B-4	/ • ±	100.4	22	90	T
20001120111						
114 10-10	NG TOF	9.0	105.9	93	90	1
LOCATION:	WEST OF B-3	2.0	103.7	55	90	T
115 10-10	NG TOF	10.7	106.9	94	90	л [.]
LOCATION:	EAST OF F-6.5	2007	100.0	24	50	*
116 10-10	NG TOF	10.8	103.5	91	90	1
LOCATION:	EAST OF F-4.1					-
117 10-10	NG TOF	12.1	104.1	91	90	1
LOCATION:	EAST OF C-3				20	*
118 10-10	NG TOF	7.0	106.1	93	90	1
LOCATION:	NORTH OF C-4					
119 10-10	NG TOF	9.3	103.1	· 90	90	1
LOCATION:	SOUTH OF C-2					
120 10-10	NG TOF	9.2	107.9	96	90	1
LOCATION:	SOUTH OF D-3	1				
		. الجيار . 				
SMITH-EMER	Y COMPANY - LO	S ANGELES	3			_

and the second second

TABLE 1

. -

•

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATION KEY			METHOD	KEY	
SG-Subgrade	e FSG	-Finish Su	bgrade	SC-Sand	cone	
FG-Finish (FAB FAB	-Finish Aq	g. Base	NG-Nucl	ear Gauge	
AB-Aggregat	e Base BTM	-Bottom ⁻	-	DT-Driv	e Tube	
RESULTS OF	DENSITY TEST	5				
Test	Test Elev.	Moisture	Drv	Relative	Compaction	Soil
No.: Date	Type Depth	Content	Density	Field	Specified	TWD0
Horr Ducc	/ft \	(%)	(n a f)	(e)	Spectified	TYPE
	(16.)	(8)	(p.c.1.)	(8)	(6)	<u> </u>
101 10 10	¥0.00	10.0	100			_
121 10-13	NG SG	12.3	108	95	90	1
LOCATION:	AT SOUTH WES	I TRENCH D	.6 AND 6.4	•		
				•		
122 10-13	NG SC	9.3	106.6	93	90	1
LOCATION:	PLUMBING TREE	NCH ON G.9	BETWEEN 4	.8 AND 4.	1	
123 10-20	SC TOF FSG	11.0	107.0	94	90	1
LOCATTON:	BACKETLL AT	THE AA/T.T	NE 6	2.	50	-
2000020000						
124 10-20	SC 102	10 0	104 0	0.0	0.0	•
		LU.U The A dem	LU4.U	92	90	T
LOCATION:	DACKFILL AT .	LINE A BET	WEEN LINE	5 & 5.9		
		_				
125 10-20	SC TOF	16.0	105.0	92	90	1
LOCATION:	BACKFILL AT	LINE A BET	WEEN LINE	4 & 5		
126 10-20	SC TOF	12.0	103.0	90	90	1
LOCATION:	BACKETLL AT	LINE AA BE	TWEN LINE	3.4 & 3.7		-
				501 u 507		
127 10-24	SC TOF	16.0	102 0	06	0.0	2
	DA OVETIT AM	TOPE E C T	IVJ.V	90	90	2
TOCATION:	DACKFIDD AT		INE 3.8			
128 10-24	SC TOF FSG	11.0	107.0	99	90	2
LOCATION:	BACKFILL AT	LINE F.7 &	LINE 3.8			
129 10-24	SC TOF FSG	10.0	102.0	94	90	2
LOCATION:	BACKFILL AT	LINE F & L	INE 4.1			
130 10-24	SC TOF FSG	13 0	102 0	94	90	2
LOCATION	BACKETLL AT	TNF 4 7 6	TINE E	74	50	2
Docurtón.	DACKIIDD AI .	DING 4.7 Q				
121 10-24		10.0	101 0			•
131 10-24	SC TUP FSG	10.0	104.0	96	90	2
LOCATION:	BACKFILL AT .	LINE F & B	ETWEEN LIN	IE 6.5 & 7	.4	
			*** _ ·			
132 10 - 24	SC TOF FSG	9.0	101.0	94	90	2
LOCATION:	BACKFILL AT	LINE F.6 &	LINE 7.9			
		se Mary				
SMITH-EMERY	COMPANY - LO	OS ANGELES				

TABLE 1

. .

-

٠

SECo File No.: 17805 SECo Report No.: G-89-5676

المرابق والمراجع المتعادين والمتعربين

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E	LEVATION	KEY				ME	THOD	KEY	
SG-Subgrade	е	FSG-	Finish	Su	bgrade	SC	-Sand	lcone	
FG-Finish (Grade	FAB-	Finish	Âg	g. Base	NG	-Nuc]	ear Gauge	
AB-Aggregat	<u>te Base</u>	BTM-	<u>Bottom</u>			DT	<u>-Driv</u>	<u>re Tube</u>	
RESULTS OF	DENSITY	TESTS							
Test	Test E	lev. 1	Moistu	re	Dry	<u>Rela</u>	<u>tive</u>	<u>Compaction</u>	Soil
No.: Date	Type De	epth (Content	- ·	Density	Fi	eld	Specified	Type
	(<u>ft.)</u>	(%)		<u>(p.c.f.)</u>	(%)		(%)	
133 10-24	SC TOF	FSG	11.0		102.0		94	90	2
LOCATION:	BACKFIL	LAT L	INE H 8	Σ L	INE 7.9				
	~~								
134 10-25	SC	FSG	7.0		102.0		94	90	2
LOCATION:	BACKFIL	L SEWE	R LINE	AT	LINE C &	LINE	6.4		
	~~								
$135 \ 10-25$	SC	FSG	13.0		105.0		97	90	2
LOCATION:	BACKFIL	L SEWE	RLINE A	AT	LINE C.6 8	LIN	E 6.2	2	
136 10-31	NG	FSG	7.9	_	105.5		93	90	1
LOCATION:	BACKFIL	L ALON	G LINE	3	BETWEEN LI	INES	E & E	5.6	
107 10 01									_
13/ 10-31	NG	FSG	10.5	_	102.6		90	90	1
LOCATION:	BACKFIL	L ALON	G LINE	Ε.	6 BETWEEN	LINE	S 2 8	a 3	
100 10 01	NO	DQQ	~ ~				• •	• •	
138 10-31	NG	FSG	6.7	-	106.5		93	90	1
LOCATION:	BACKFIL	L ALON	G LINE	Е.	9 BETWEEN	LINE	S 1 8	a 2	
120 10 21	NG	DOO	0 F		100 0				
139 10-31	NG	FSG	9.5	~	109.0	CMD G	95	90	1
LOCATION:	BACKFIL	L ALON	G LINE	3	BETWEEN LI	LNES	ΓωΙ	£	
140 10-21	NC	RCC	0 0		105 7		^ ^	~ ~	
	NG DAOVETTI	LDC L MION	0,0 7 TTNE	T	103./ DEENVEEN IS		93	90	Ŧ
LOCATION:	DACKLIT	L ALON	G LINE	E	BETWEEN LI	LNES	4 ه د	ł	
141 10-21	NC	RCC	0 0		105 0		<u></u>	~~	
	NG DACKETTI	FOG T ATOM	9.U C IINE	Ð	LUS.U DEDMEEN IJ	INDO	92 5 5 7	. 90	1
LOCATION:	DACKLIU	L ALON	G LINE	E	BETWEEN L	LNES	5 & 6)	
142 10-21	NC	FCC	10 0		100 0		.	~~	
	NG	rdg Faton		- 3	100.0		93	90	T
LOCATION:	DACKLIP	L ALON	G LINE	SА	DETWEEN I	LINES	D.6	& D.7	
1/2 10-21	NC	FCC	10 0		10C E		<u></u>	~~	-
	NG DACKETTI	FOG I MION	TTNE	ъ		TTM	93	90	T
LOCATION:	DACKLIT	L ALON	G LINE	в.	3 BETWEEN	LINE	516	« 2	
144 10-21	NC	FCC	10 0	~ 7	100 4		0.0	0.0	•
	BACVETTI	LOG LYVI	TTNE	1	107.4 Demuerni ti	INEC	טע היים	90	Ŧ
LOCATION:	DACKLIP	L ALON	а глиг	1	DEIWEEN L	INES	D & F	4.0	
CMTTU-EMED	V COMDAND	<u>и — то</u>	C ANOT				•		
TARTE 1	I COMPAN	r – 10	S ANGEI	050	* .				

en de la companya de

.

.

.

SECo File No.: 17805 SECo Report No.: G-89-5676

· • •

. . .

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

<u> </u>	LEVATION KEY		METHOD KEY	
SG-Subgrade	e FSG-Finis	sh Subgrade	SC-Sandcone	
FG-Finish (Grade FAB-Finis	sh Agg. Base	NG-Nuclear Gauge	
<u>AB-Aqqreqa</u>	<u>te Base BTM-Botto</u>	om se s	DT-Drive Tube	
RESULTS OF	DENSITY TESTS			
Test	Test Elev. Moist	ure Dry Re	lative Compactio	n Soil
No.: Date	Type Depth Conte	ent Density	Field Specified	Type
	(ft.) (%)	(p.c.f.) (8) (<u>8</u>)	-16-
			•/(•/	
145 10-31	NG FSG 12.8	106.3	93 90	1
LOCATION:	BACKFILL ALONG LIN	E 0.1 BETWEEN LT	NES A.2 & A 5	-
			abb hie w his	
146 10-31	NG FSC 12 5	104.0	01 00	1
LOCATION:	BACKETLL ALONG LIN	Γ ΔΑ ΒΕΤΨΕΓΝ ΤΙΝ		Ŧ
DOCHITON.	DACKLIDD ADONG DIN	IE AA DEIWEEN LIN.	ES U.I & I	
147 10-21		0.9 5		•
	NG FBG 12.1	. 90.0 Ne i demutentition	86 90	1
LOCATION:	BACKLIFT ATONG FIN	IE A BETWEEN LINE	S 1.1 & 2, TEST	FALLED
140 10 01				_
	NG FSG 9.7	97.0	85 90	1
LUCATION:	BACKFILL ALONG LIN	IE A BETWEEN LINE.	S 2 & 3	
140 10 01	NG 755 11			
149 10-31	NG FSG 11.9	105.8	93 90	1
LOCATION:	RETEST OF TEST NO.	147		
150 10-31	NG FSG 9.8	108.8	95 90	1
LOCATION:	RETEST OF TEST NO.	148		
151 11-1	NG FSG 6.4	105.5	93 90	1
LOCATION:	BACKFILL ALONG LIN	E 1.7 BETWEEN LI	NES E & E.7	
152 11-1	NG FSG 9.7	105.2	97 90	2
LOCATION:	BACKFILL ALONG LIN	E E BETWEEN LINE:	S 1 & 2	-
153 11-1	NG FSG 8.8	109.8	96 90	1
LOCATION:	BACKFILL ALONG LIN	E O BETWEEN LINE	S D 7 & F	-
			5 D . / & E	
154 11-1	NG FSG 10 3	110 5	97 90	1
LOCATION	BACKETLL ALONG LIN	IF 1 BETWEEN ITNE	97 90 8 D 6 D 6	Ŧ
Doomiton.	DACKITED ADONG DIN	IS I DETABEN DINE.	5 D & D.6	
155 11-2		105 0	~~ ~~	-
			92 90	T
LOCATION:	BUILDING PAD AREA	BETWEEN LINES F6	& F/	
156 11 0				-
	NG FSG 3.2	105.4	92 90	1
LUCATION:	BUILDING PAD AREA	BETWEEN LINES F5	& F6	
SMITH-EMER	Y COMPANY - LOS ANG	ELES		
TABLE 1				

-

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E)	LEVATION_KEY	METHOD KEY	
SG-Subgrade	FSG-Finish Subgrade	SC-Sandcone	······································
FG-Finish (Grade FAB-Finish Agg. Base	NG-Nuclear Gauge	
AB-Aggregat	te Base BTM-Bottom	DT-Drive Tube	
RESULTS OF	DENSITY TESTS		
Test	Test Elev. Moisture Dry	Relative Compaction	Soil
No.: Date	Type Depth Content Density	Field Specified	Type
	(ft.) (%) (p.c.f.)	(%) (%)	-160
157 11 - 2	NG FSG 3.0 106.6	93 90	٦
LOCATION:	BUILDING PAD AREA BETWEEN LINE	S F4 & F5	-
158 11-2	NG FSG 6.3 109.7	96 90	1
LOCATION	BACKFILL ALONG LINE D BETWEEN		+
2001110111	DIGITINE ABONG DINE D DEIWEEN	LINES 0.0 & 0.4	
159 11-2	NG FSC 4 5 100 1	0.6 0.0	•
LOCATION	BACKETII ALONG LINE D RETWEEN		T
DOCATION.	DACKFIDD ALONG LINE D BEIWEEN	LINES / & 0.0	
160 11-2	NG ESC 10.0 100.4		-
	NG FOG 10.0 109.4	96 90	1
LOCALION:	BACKFILL ALONG LINE 7.4 BETWEE	IN LINES C.7 & C.8	
161 11-2			
	NG FSG 10.6 108.1	95 90	1
LOCATION:	BACKFILL ALONG LINE O BETWEEN	LINES C.2 & 1.5	
160 11 0			
	NG FSG 6.7 109.0	96 90	1
LUCATION:	BACKFILL ALONG LINE 5.4 BETWEE	IN LINES 5 & D.5	
1.60			
163 11-3	NG FSG 6.7 110.8	97 90	1
LOCATION:	BACKFILL ALONG LINE B.4 BETWEE	N LINES 8 & 6.7	
164 11-3	NG FSG 6.9 107.8	95 90	1
LOCATION:	BACKFILL ALONG LINE B.7 BETWEE	N LINES 6.7 & 6.2	
165 11-3	NG FSG 2.4 97.3	85 90	`1
LOCATION:	BACKFILL ALONG LINE G6 BETWEEN	LINES 7 & 6, TEST FAI	LED
166 11-3	NG FSG 6.3 97.1	85 90	1
LOCATION:	BACKFILL ALONG LINE G6 BETWEEN	LINES 7 & 6. TEST FAI	LED
		· · · · · · · · · · · · · · · · · · ·	
167 11-3	SC SG 7.9 113.2	99 90	1
LOCATION:	RETEST OF TEST NO. 165 AND 166		-
	,,		
168 11-7	SC SG-2 10.2 106.3	96 90	3
LOCATION:	SOUTH OF B BETWEEN 6.2 AND 6 7	50 50	J
SMITH-EMERY	COMPANY - LOS ANGELES		
TABLE 1			

. ...

e merce de la companya de la compa

٠

٠

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

<u> </u>	LEVATION KEY		METHOD	KEY	
SG-Subgrade	FSG-Finish S	ubgrade	SC-Sand	lcone	
FG-Finish (Grade FAB-Finish A	gg. Base	NG-Nuc]	lear Gauge	
AB-Aggregat	<u>te Base BTM-Bottom</u>		DT-Driv	<u>re Tube</u>	
RESULTS OF	DENSITY TESTS				
Test	Test Elev. Moisture	Dry	<u>Relative</u>	Compaction	Soil
No.: Date	Type Depth Content	Density	Field	Specified	Туре
	<u>(ft.) (%)</u>	(p.c.f.)	(%)	(%)	
169 11-7	SC SG 9.7	105.0	95	90	3
LOCATION:	ON D.4 WEST OF 5.4				
170 11-7	SC SG 16.7	108.8	98	90	3
LOCATION:	ON B.3 EAST OF 6.7				
171 11-7	SC SG 16.8	107.9	97	90	3
LOCATION:	SOUTH OF E.6 BETWEEN	7 & 6.6			
172 11-8	SC SG-2 6.6	107.3	94	90	1
LOCATION:	NORTH OF A9 BETWEEN 6	.2/6.7			
	· ·				
173 11-8	SC SG-2 7.9	105.7	93	90	1
LOCATION:	WEST OF 6.7 BETWEEN B	/B.3			
174 11-8	SC SG 9.1	106.4	93	90	1
LOCATION:	WEST OF 8 ON G				
	•••				
175 11-15	NG SG 16.6	111.4	100	90	3
LOCATION:	ON A.2 EAST OF 0				
176 11-15	NG SG 20,5	107.8	97	90	3
LOCATION:	ON B EAST OF 1				
177 11-16	NG SG 21.0	107.6	97	90	3
LOCATION:	ON D.7 EAST OF 0.1				
178 11-16	NG SG 19.2	108.8	98	90	3
LOCATION:	ON D EAST OF 1				
170 11 10	NG G G G G G G G G G				
1/9 11-16	NG SG 30.1	107.5	97	90	3
LOCATION:	ON C.2 EAST OF 0.1				
100 11 10					
180 11-16	NG SG 8.6	104.2	91	90	1
LOCATION:	ON 2 EAST OF A	-			
SMITH-EMERY	COMPANY - LOS ANGELE	5			
TABLE I					

٠

.

.

.

SECo File No.: 17805 SECo Report No.: G-89-5676

• •

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

.

.

E	LEVATION KEY	METHO	D KEY	
SG-Subgrad	e FSG-Finish Subgrade	SC-Sa	ndcone	
FG-Finish (Grade FAB-Finish Agg. Base	NG-Nu	clear Gauge	
<u>AB-Aggrega</u>	te Base BTM-Bottom	DT-Dr	ive Tube	
RESULTS OF	DENSITY TESTS			
Test	Test Elev. Moisture Dry	<u>Relativ</u>	e Compaction	Soil
No.: Date	Type Depth Content Density	Field	Specified	Туре
	(ft.)(%)(p.c.f.)	(%)	(%)	
101 11 10				
181 11-18	SC SG 8.9 104.2	91	90	1
LOCATION:	NORTH OF A EAST OF 5			
192 11-10				
102 $11-10$	SC SG 15.2 105.9	95	90	3
TOCALION:	SOUTH OF E.7 EAST OF 2.9			
183 11-19	SC SC 14 7 100 2	07		
	ON = 7 = 3G = 14.7 = 108.3	97	90	3
LOCATION.	ON F.7 EASI OF 3.8			
184 11-21	NG SG 7 1 105 0	0.2	0.0	2
LOCATION:	SOUTH OF G ON 6	90	90	Ŧ
20011220111				
185 11-21	NG SG 6.5 106.3	03	0.0	1
LOCATION:	BETWEEN F & F 6 WEST OF 7 4	93	90	T
200112011	DEFINED E & E.O WEST OF 7.4			
186 11-21	NG SG 6.7 106.0	03	90	7
LOCATION:	EAST OF 7.5 SOUTH OF D	23	50	Ŧ
187 11-28	NG FTG-10 13.1 109.5	96	90	r
LOCATIION:	FOOTING NORTH ELECTRICAL VALL	р <u>50</u>	20	1
		•		
188 11-28	NG 12" 10.6 107.1	94	90	1
LOCATION:	BACKFILL IN TRASH ENCLOSURE BET	WEEN FOO	TINGS SOUTHW	
			221100 00011111	
189 11-29	SC BTM-6" 11.1 114.0	100	90	1
LOCATION:	TRASH ENCLOSURE BOTTOM			-
190 11-29	SC BTM 13.0 113.9	100	90	1
LOCATION:	MICROWAVE WALL FOOTING			_
191 12-14	SC FSG 11.0 107.0	94	90	1
LOCATION:	BACKFILL WALL FOOTING AT LINE F	2 TRASH	ENCLOSEMENT	
100 10 11				
192 12-14	SC FSG 9.0 107.0	94	90	1
LOCATION:	BACKFILL WALL FOOTING AT LINE F	6 TRASH	ENCLOSEMENT	
				·
SMITH-EMERY	COMPANY - LOS ANGELES			_
TABLE I	The Alase Marrie			

States and a second

. . . .

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

ELEVATION KEY METHOD KEY	
SG-Subgrade FSG-Finish Subgrade SC-Sandcone	
FG-Finish Grade FAB-Finish Agg. Base NG-Nuclear Gauge	
<u>AB-Aggregate Base BTM-Bottom</u> DT-Drive Tube	
RESULTS OF DENSITY TESTS	
Test Test Elev. Moisture Dry Relative Compaction Soi	1
No.: Date Type Depth Content Density Field Specified Type)e
(ft.) (%) (p.c.f.) (%) (%)	, C
193 12-14 SC FSG 9.0 106 93 90 1	
LOCATION: BACKFILL BETWEEN LINE F2 & F6 & LINE 7 9	
194 12-29 SC FSC 11 0 112 0 00 00 1	
IOCATION BACKETH COMMERCE AN INF C OCLIME U	
DOCATION. DACATION SUDTAWEST AT LINE 0.8 & LINE H.I	
$\frac{195}{12-29} SC + \frac{156}{10.0} \frac{10.0}{112.0} \frac{112.0}{98} \frac{90}{90} \frac{1}{1}$	
LOCATION: BACKFILL SOUTHWEST AT LINE 3.8 & LINE H.1	
196 1-11 SC SG-1 13.8 111.3 98 90 1	
LOCATION: BACKFILL WALL PROPANE TANK ENCLOSURE	
197 1-11 SC SG-0.5 12.5 105.7 93 90 1	
LOCATION: BACKFILL WALL PROPANE TANK ENCLOSURE	
198 1-11 SC FSG 8.4 111.3 98 90 1	
LOCATION: BACKFILL WALL PROPANE TANK ENCLOSURE	
199 1-11 SC SG-1 11.1 107.2 94 90 1	
LOCATION: BACKFILL WALL TRASH ENCLOSUPE	
200 1-26 50 FSC 9 1 111 4 00 00 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
DOCATION. SILF & WALKWAY AREA LINES 8, B.S	
201 1-26 SC FSG 9.8 104.9 92 90 1	
LOCATION: STEP & WALKWAY AREA LINES 8, C.2	
202 2-2 SC -1FSG 9.0 103 90 90 1	
LOCATION: BACKFILL STORM DRAIN E OF LINE O, BETWEEN LINE C.5 & D	
203 2-2 SC -1FSG 8.0 108 95 90 1	
LOCATION: BACKFILL STORM DRAIN E OF LINE O & @ LINE B	
204 2-2 SC -1FSG 9.0 107 94 90 1	
LOCATION: BACKFILL STORM DRAIN & TIME 3 3 & & TIME H	
SMITH-EMERY COMPANY - LOS ANGELES	

a not the second sec

.......

e e esta a s

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATION KEY	METHOD KE	Y	
SG-Subgrade	FSG-Finish Subgrade	SC-Sandco	ne	
FG-Finish (Frade FAB-Finish Agg. Base 1	NG-Nuclea:	r Gauge	
<u>AB-Aggregat</u>	<u>e Base BTM-Bottom I</u>	<u>DT-Drive '</u>	<u>Fube</u>	
RESULTS OF	DENSITY TESTS			
Test Ne i Dete	Test Elev. Moisture Dry <u>Re</u>	<u>lative Co</u>	mpaction &	Soil
No.: Date	Type Depth Content Density	Field Sp	ecified ?	Гуре
	(IT.) (%) (p.C.f.) (?	š)	(%)	
205 2-2	50 E50 10 0 111			
	BACKETTI STORM DEATN A LINE 2 2 6 /	97 9 I INE C	90	T
DOCATION.	DACKTIDE STORM DRAIN @ DINE 3.3 & (9 LINE G		
206 2-2	SC FSG 7.0 109	95	90	1
LOCATTON:	BACKETLL STORM DRAIN F OF LINE O &	95 0 IINE D	90 4	Ŧ
2000012000	BROWTHE STORY BRAIN E OF DINE O &	6 TINE D	• 4	
207 2-2	SC FSG 10.0 107	94	90	1
LOCATION:	BACKFILL STORM DRAIN E OF LINE O &	A LINE B	7	Ŧ
		e hind b	• /	
208 2-3	SC FSG 10.0 104	91	90	1
LOCATION:	BACKFILL STORM DRAIN N OF PROPANE	TANK ENCL	SURE & @	TINE D
				2202 0.
209 2-3	SC FSG 9.0 106	93	90	1
LOCATION:	BACKFILL STORM DRAIN E OF LINE O &	@ LINE A		_
210 2-7	SC FSG 11.7 102.4	90	90	1
LOCATION:	BACKFILL STORM DRAIN NORTHWEST			
211 2-7	SC FSG 11.7 103.8	91	90	1
LOCATION:	BACKFILL STORM DRAIN NORTHWEST			
211A 2-20	SC -1'FSG 7 105	92	90	1
LOCATION:	39' NORTH EDGE TRENCH LPG LINE			
212 2 20				
	5C = 17FSG = 6 = 102.1	90	90	1
LUCATION:	15' NORTH EDGE TRENCH LPG LINE			
212 2	60 E60 0 107	<u></u>	• •	
	BLCVETTLA OOL DC LIVE EDCE (DENO)	. 93	90	1
LOCATION.	BACKFILL 6 90. LPG LINE EDGE TRENCH	1		
214 2-21		0.0	0.0	-
	BACKETIL A 142/ IDC ITNE EDCE MDEN	92	90	T
	SHOW THE EDGE TRENC	-П		
SMITH-EMERY	COMPANY - LOS ANGELES			
TABLE 1				

· · · · · · · ·

. .

and the second second

- -

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

	ELEVATION	KEY			METHOD	KEY	
SG-Subgra	de	FSG-Fi	nish a	Subgrade	SC-Sand	lcone	
FG-Finish	Grade	FAB-Fi	nish <i>i</i>	Agg. Base	NG-Nuc	lear Gauge	
AB-Aggreg	<u>ate Base</u>	<u>BTM-Bo</u>	<u>ttom</u>		DT-Driv	<u>ve Tube</u>	
RESULTS O	F DENSITY	TESTS					
Test	Test El	Lev. Mo	istur	e Dry	<u>Relative</u>	Compaction	<u>l</u> Soil
No.: Date	Type De	epth Co	ntent	Density	' Field	Specified	Туре
	(1	<u>[t.]</u>	(%)	(p.c.f.)	(%)	<u>(%)</u>	
015 0 01	6 0 0	Dae	•				_
215 2-21	SC 3-	-FSG	9	106	93	90	1
LUCATION:	DACKFILI	P 6 102.	LPG .	LINE EDGE	TRENCH		
216 2-22	SC -	TRC	¢	102	0.0	· ·	-
	BACKETLI	LIGG . TDENCU		TINE 155/	NODEL EDCE	90 MDENOU	Ŧ
DOCATION.	DACKIIII	L IKENCH	LFG .	TINE 122.	NORTH EDGE	TRENCH	
217 2-22	SC	FSG	٩	106	03	00	7
LOCATION:	BACKETLI	L TRENCH	LPG	LINE 172/	NORTH FOCE	TOFNCU	Ŧ
			LI Q .		NOKIH EDGE	IKENCH	
218 2-28	SC -2	2'SG	6.7	100.5	88	an	1
LOCATION:	FIRELIN	TRENCH	THRU	S END OF	PARKING LO	טע דגיד יייסידייי יי	T.FD
			11110	0 11.0 01	Indiano 10.	I, ILDI FAI	
219 2-28	SC -2	2'SG	6.3	102.4	90	90	1
LOCATION:	FIRELIN	E TRENCH	THRU	S END OF	PARKINGLO	г	-
					2011012100 200	-	
220 2-28	SC -2	2'SG	9.6	108.2	95	90	1
LOCATION:	FIRELIN	E TRENCH	THRU	S END OF	PARKING LO	r r	-
						-	
221 2-28	SC -2	2'SG	7.2	102.6	90	90	1
LOCATION:	FIRELINI	E TRENCH	THRU	S END OF	PARKING LOT	Г	-
222 2-28	SC -2	2'SG	7.9	105.4	92	90	1
LOCATION:	FIRELINI	E TRENCH	BACK	FILL W OF	BLDG N THRU	J PRKNG LOI	1
223 2-28	SC -2	2'SG	8.3	111.9	98	90	1
LOCATION:	FIRELINE	E TRENCH	BACK	FILL W OF	BLDG N THRU	J PRKNG LOI	ı
224 2-28	SC -2	2'SG	7.7	106.0	93	90	1
LOCATION:	FIRELINE	TRENCH	BACKF	ILL W OF E	LDG N THRU	PRKNG LOT	
		_					
225 2-28	SC -2	2'SG	7.6	106.1	93	90	1
LOCATION:	FIRELINE	E TRENCH	BACK	FILL @ NW	CORNER OF I	BLDG	
			مەربىيە يېلىپى مەربىيە يېلىپى				
226 2-28	SC -2	2'SG	8_6	`108.9	96	90	1
LOCATION:	FIRELINE	TRENCH	BACK	FILL N SID	E OF BLDG		
			<u> </u>		•		
SMITH-EMEI	RY COMPANY	(- LOS ,	ANGELI	ES			
TABLE 1				-94 p.s			

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

ELEVATION KEY METHOD KEY SG-Subgrade FSG-Finish Subgrade SC-Sandcone FG-Finish Grade FAB-Finish Agg. Base NG-Nuclear Gauge AB-Aggregate Base BTM-Bottom DT-Drive Tube RESULTS OF DENSITY TESTS Test Test Elev. Moisture Dry Relative Compaction Soil No.: Date Type Depth Content Density Field Specified Type (ft.) (%) <u>(p.c.f.)</u> (%) (%) 227 2-28 SC -2'SG 7.1 105.4 92 90 1 FIRELINE TRENCH BACKFILL @ N SIDE OF BLDG LOCATION: 228 2-28 SC -2'SG 7.4 103.4 91 90 1 LOCATION: RETEST OF TEST NO. 218 229 3-15 SC 1-FSG 7.1 104.3 91 90 1 LOCATION: STORM DRAIN N SIDE PARKING LOT LINE A/COLUMN 3.7-3.4 230 3-15 SC FSG 6 96.6 84 90 1 LOCATION: FIRE HYDRANT SE CORNER PARKING LOT/LINE D, TEST FAILED 231 3-15 SC FSG 12.7 1126 98 90 1 LOCATION: S SIDE STORM DRAIN N SIDE PARKING LOT LINE A/3.7-3.4 232 3-24 SC 18"FG 7.5 106.2 93 90 1 LOCATION: BACKFILL TRENCH NORTH SECTION 3-27 233 SC FG 18 106.4 93 90 1 BACKFILL TRENCH NORTHWEST SECTION LOCATION: 234 3-27 SC FG 16 108.9 95 90 1 LOCATION: BACKFILL TRENCH SOUTH SECTION 234A 4-19 SC FSG 6.7 114.1 100 90 1 LOCATION: BUILDING PAD SUTH SIDEWALK 235 4-19 SC FSG 6.0 117.2 100 +90 1 LOCATION: BUILDING PAD WEST SIDEWALK 236 4-24 SC FSG 5.2 104.3 91 90 1 LOCATION: SOUTHEAST DRIVE APPROACH 237 4-24 SC FSG 10.2 109.3 95 90 1 SOUTHEAST DRIVE APPROACH LOCATION: 化过度分子输入 SMITH-EMERY COMPANY - LOS ANGELES TABLE 1

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

<u>E</u>	LEVATI	ON KEY			METHOD	KEY	
SG-Subgrade	e	FSG-	Finish Su	ıbgrade	SC-Sand	lcone	
FG-Finish (Grade	FAB-	Finish Aq	g. Base	NG-Nuc]	lear Gauge	
<u>AB-Aggregat</u>	<u>te Base</u>	<u>∋ </u>	Bottom		DT-Driv	<u>re Tube</u>	
RESULTS OF	DENSI	<u> TESTS</u>					
Test	Test	Elev.	Moisture	Dry]	<u>Relative</u>	Compaction	Soil
No.: Date	Туре	Depth	Content	Density	Field	Specified	Туре
		<u>(ft.)</u>	(%)	<u>(p.c.f.)</u>	(%)	(%)	
238 4-24 LOCATION:	SC SOUTHI	FSG	10.7 VE APPROZ	104.9	92	90	1
				1011			
239 5-1 LOCATION:	SC NORTH	FSG PARKING	4.8 STALL	109.5	96	90	1
240 5-1 LOCATION:	SC NORTH	FSG PARKING	5.6 STALL	103.3	90	90	1
241 5-1 LOCATION:	SC NORTH	FSG PARKING	6.7 STALL	109.4	96	90	1
242 5-1 LOCATION:	SC NORTHI	FSG EAST PAR	6.3 KING STAI	110.3 LL	96	90	1
243 5-1 LOCATION:	SC NORTHI	FSG EAST PAR	7.5 KING STAI	109.3 L	95	90	1
244 5-1 LOCATION:	SC NORTH	FSG PARKING	9.0 LOT	108.2	94	90	1
245 5-1 LOCATION:	SC NORTH	FSG PARKING	8.6 LOT	109.0	95	90	1
246 5-1 LOCATION:	SC NORTH	FSG PARKING	10.2 LOT	115.4	100+	90	1
247 5-1 LOCATION:	SC NORTH	FSG PARKING	6.7 LOT	112.7	98	90	1
248 5-1 LOCATION:	SC NORTH	FSG PARKING	6.3 LOT	113.0	99	90	1
249 5-5 LOCATION:	SC NORTH	FSG PARKING	5.8 LOT 2ND	112.0 STALL SOUTH	98 H END	90	1
SMITH-EMERY TABLE 1	COMPA	ANY - LOS	ANGELES	and the second s			

.

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

<u>E</u>	LEVATIO	<u>ON KEY</u>				METHOD	KEY	
SG-Subgrade	e	FSG-1	Finish Su	ıbgrade		SC-Sand	lcone	
FG-Finish (Grade	FAB-1	Finish Aq	gg. Bas	e	NG-Nuc]	lear Gauge	
AB-Aggregat	<u>te Bas</u> e	<u>= BTM-</u>]	Bottom			DT-Driv	ve Tube	
RESULTS OF	DENSIT	TESTS						
Test	Test	Elev. 1	loisture	Dry	Re	elative	Compaction	Soil
No.: Date	Type	Depth (Content	Densi	tv —	Field	Specified	Type
		(ft.)	(%)	(p.c.f	.1	(%)	(%)	-16-
250 5-5	SC	FSG	7.2	109.3		96	90	1
LOCATION:	NORTH	PARKING	LOT 3RD	STALL	SOUTH	END		-
251 5-5	SC	FSG	4.7	111.9		98	90	1
LOCATION:	NORTH	PARKING	LOT 2ND	STALL	NORHT	END		-
			, _					
252 5-5	SC	FSG	11.7	105.9		93	90	1
LOCATION:	NORTH	PARKING	LOT 3RD	STALL	NORTH	END	20	1
253 5-8	SC	FSG	1.5	110.2		97	90	1
LOCATION:	NORTH	PARKING	LOTIST	STALL.	NODTH		90 DNIED	1
2001120110		111111111110		DIVID	NOKTIN		ULK .	
254 5-8	SC	FSG	15	112 1		00	00	1
LOCATION	NODTH	DADKING		CUNTT .	ween c	ככ שמדי	90	Ŧ
DOCATION.	nonin	FARTING	TOT SHD	STADE	MEDI S	TDE		
255 5-9	50	FCC	1 5	110 0		0.0	<u>.</u>	-
LOCATTON:		DADATNC			COLIMIT	98 700 001	90	Ŧ
DOCATION.	NORTH	PARKING	LOI SRD	STALL	SUUTH	VEST COP	INER	
256 5-8	SC	FCC	55	100 1		0.0	~~	
		261 1970 70 7	0.0 No 051	100.1		93	90	1
LOCATION:	RETEST	OF TES	r NO. 253	5				
257 5 0	60	Tag	14 0					_
	SC DTWD00	FSG	14.2	. 98.2		86	90	1
LUCATION:	RETEST	OF TES	L'NO. 254	, TEST	FAILE	ED		
	~~							
258 5-9	SC	FSG	5.9	98.7		87	90	1
LOCATION:	RETEST	F OF TEST	C NO. 255	5, TEST	FAILE	ED		
259 5-9	SC	FSG	6.8	101.8		90	90	1
LOCATION:	RETEST	OF TEST	C NO. 256	5				
260 5-9	SC	FSG	5.3	106.7		94	90	1
LOCATION:	N PARE	KING LOT	MIDDLE	DF S SI	DE 3RI	STALL		
			بر میں ایک	and the second sec				
261 5-9	SC	FSG	7.8	107.8		95	90	1
LOCATION:	RETEST	OF TEST	NO. 257	€ 258				
			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
SMITH-EMERY	COMPA	NY - LOS	ANGELES	1. je				···
TABLE 1			the start of the s					
July 14, 1989

.

SECo File No.: 17805 SECo Report No.: G-89-5676

. . .

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATIO	N KEY			METHOD	KEY	
SG-Subgrade	9	FSG-1	Finish S	ubgrade	SC-Sand	cone	····
FG-Finish (Grade	FAB-1	Finish A	gg. Base	NG-Nucl	ear Gauge	
<u>AB-Aggregat</u>	<u>te Base</u>	BTM-1	<u>Bottom</u>		<u>DT-Driv</u>	<u>e Tube</u>	
RESULTS OF	DENSIT	Y TESTS	_				
Test	Test	Elev. 1	Moisture	Dry	<u>Relative</u>	Compaction	Soil
No.: Date	Туре	Depth (Content	Density	Field	Specified	Туре
		<u>(ft.)</u>	(%)	<u>(p.c.f.)</u>	(%)	(%)	
262 5-9	SC	FSG	6.5	109.2	96	90	1
LOCATION:	N PARK	ING LOT	S SIDE	E CORNER			
263 5-11	SC	FAB	6.5	125.7	98	95	2
LOCATION:	N PARK	ING LOT	SW CORN	ER			
264 5-11	SC	FAB	7.8	120.4	94	95	2
LOCATION:	N PARK	ING LOT	S SIDE	MIDDLE OF	4TH STALL.	TEST FAILE	ED
265 5-11	SC	FAB	7.3	124.6	97	95	2
LOCATION:	RETEST	OF TEST	F NO. 26	4	• •		-
266 5-11	SC	FAB	7.9	122.5	96	95	2
LOCATION:	N PARK	ING LOT	SE STDE	OF 4TH ST	AT.T.	20	2
			0. 0100				
267 5-11	SC	FAB	11.1	125.3	98	95	2
LOCATION:	N PARK	TNG LOT	SE STOF	3PD STATE	90	95	2
		ING DOI	OF SIDE	JUD SIMU			
268 5-12	SC	FAR	10.3	120 0	100	05	•
	N DADK	TNC IOT	IV.J	123.U 200 CMAII	100	95	2
DOCATION.	I FALL	THG FOI	SW SIDE	SKD STALL			
260 512	80	END	0 6	101 0	0.5	<u> </u>	-
	אסגם א	TNC TOT	9.0 CE CIDE		95	95	2
LOCATION:	N PARK	THE LOT.	SE SIDE	ZND STALL			
270 E 12							
270 5-12	SC	FAB	/.1	118.9	93	95	2
LOCATION:	N PARK	ING LOT	OF NW S	IDE IN 2ND	STALL, TE	ST FAILED	
	~ ~						
2/1 5-12	SC	FAB	6.4	120.7	94	95	2
LOCATION:	N PARK	ING LOT	W SIDE	BETWEEN 2N	D/3RD STAL	L, TEST FAI	LED
272 5 - 12	SC	FAB	7.8	130.3	94	95	2
LOCATION:	N PARK	ING LOT	NW CORN	ER, TEST F	AILED		
			منصور می از منطق از می از م مراجع می از می				
273 5-12	SC	FAB	7.4 55	122.1	95	95	2
LOCATION:	RETEST	OF TEST	NO. 27	0			-
SMITH-EMERY	COMPA	NY - LOS	ANGELE	Size			
TABLE 1			* * j.# .	and the second			

,

July 14, 1989

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

E]	LEVATION K	EY		METHOD	KEY	
SG-Subgrade FG-Finish (<u>AB-Aqqregat</u>	e : Grade : te Base :	FSG-Finish S FAB-Finish A BTM-Bottom	Subgrade Agg. Base	SC-Sand NG-Nucl DT-Driv	lcone .ear Gauge 7e Tube	
RESULTS OF	DENSITY T	ESTS				
Test No.: Date	Test Eler Type Dep (ft	v. Moisture th Content .) (%)	Dry Density (p.c.f.)	<u>Relative</u> Field (%)	Compaction Specified (%)	Soil Type
274 5-12 LOCATION:	SC FARKING	AB 8.4 LOT E SIDE	123.9 AT 3RD STAT	97 LL	95	2
275 5-12 LOCATION:	SC FA RETEST OF	AB 7.5 TEST NO. 27	126.3 71	99	95	2
276 5-12 LOCATION:	SC FA RETEST OF	AB 7.6 TEST NO. 27	122.6 72	96	95	2
277 5-12 LOCATION:	SC FA	AB 7.8 N 1ST STALL	123.0	96	95	2
278 5-12 LOCATION:	SC FA	AB 7.1 F 1ST STALL	122.4	96	95	2
279 5-12 LOCATION:	SC FAR NE CO	AB 9.1 RNER OF N PA	124.1 ARKING LOT	97	95	2
SMITH-EMERY	COMPANY ·	- LOS ANGELE	ES	· · · · · · · · · · · · · · · · · · ·	<u> </u>	

TABLE 1

÷ .

July 14, 1989

SECo File No.: 17805 SECo Report No.: G-89-5676

Project: Southern California Gas Company Coastal Division Headquarters Torrance, California

Soil <u>Type</u>	Classification	 Maximum Density (PCF)	Optimum <u>Moisture,(%)</u>
1	LIGHT BROWN SILTY SAND	114.0	12.0
2	BROWN SILT SAND	110.0	10.0
3	GRAY FINE TO MEDIUM SAND	108.0	14.0
4	GREEN FINE TO MEDIUM SAND	111.0	13.0
5	CLASS II CRUSHED MISC. BASE	128.0	7.5

 File No.: 17805 Report No.: G-89-5676

CITY OF TORRANCE

DEPARTMENT OF BUILDING & SAFETY

ENGINEER'S CERTIFICATE OF COMPLIANCE FOR COMPACTED EARTH FILLS

LOCATION OF FILL: Coastal Division Headquarters Parking Lot, Fine Grading

and Trench Backfill

JOB ADDRESS: Crenshaw Boulevard and Sepulveda Boulevard

SOIL TESTING AGENCY: SMITH-EMERY COMPANY

PROPERTY OWNER'S NAME: Southern California Gas Company

OWNER'S ADDRESS: Section M/L 732A, P.O. Box 3749 Los Angeles, California

PER REPORTS ON OUR PROJECT NO. 17805

DATE WORK STARTED ON PROJECT: June 22, 1988

DATE FILL WAS COMPLETED: May 12, 1989

DATE OF THIS CERTIFICATE: July 14, 1989

TO THE SUPERINTENDENT OF THE BUILDING: Jerry Ellis

* I HEREBY CERTIFY THAT I HAVE PERSONALLY INSPECTED AND TESTED THE PLACING OF

COMPACTED EARTH FILL ON THE ABOVE DESCRIBED PROPERTY, AND ON THE BASIS OF THESE

INSPECTIONS AND TESTS IT IS MY OPINION THAT THE SAME WAS PLACED IN CONFORMITY

WITH THE REQUIREMENTS OF THE CITY OF TORRANCE BUILDING CODE.

GEOTECHNIZAL ENGINEE CALIFORNIA CERTIFICATE NC

* FOR THE PURPOSE OF THIS CERTIFICATE, TO "HAVE PERSONALLY INSPECTED AND TESTING SHALL INCLUDE INSPECTION AND TESTING PERFORMED BY ANY PERSON RESPONSIBLE THE LICENSED ENGINEER SIGNING THIS CERTIFICATE. WHERE THE INSPECTION AND TESTING OF ALL OR PART OF THE WORK ABOVE IS DELEGATED, FULL RESPONSIBILITY SHALL BE ASSUMED BY THE LICENSED ENGINEER WHOSE SIGNATURE IS AFFIXED THEREON.

HORN & ASSOC., INC.

4650 ARROW HWY., SUITE E-4, MONTCLAIR, CA 91763 714 - 624-1906 OR 624-1280

June 27, 1989

CITY OF TORRANCE BUILDING DEPARTMENT 3031 Torrance Blvd. Torrance, CA 90503

Atten: JIM SHELDON, Building Offical

Subject: FINAL GRADING CERTIFICATION

Ref. site: SO. CALIF. GAS CO., SOUTH COASTAL DIVISION HEADQUARTERS Grading Plan by Carl W. Donmoyer & Assoc., Dwg. #CO.1, Cl.1, Approved 6/16/88

Dear Mr. Sheldon:

We find the final grading of the above referenced site has been completed substantially per plan for line and grade.

Sincerely yours,

ALLEN D. MORRISON RCE 11724, Exp. 12/31/92

ADM/pd cc: 88-023

Corporate Headquarters

Transpacific Development Company

June 9, 1988

CITY OF TORRANCE Grading Division Department of Building and Safety 3031 Torrance Boulevard Torrance, CA 90501

ATTN: Mr. Bill Becker

RE: Acceptance of drainage from Parcel 2 of Parcel Map No. 19013 (P.M.B. 202/51-55)

Gentlemen:

We are the owners of Parcel 1 of Parcel Map No. 19013 (P.M.B. 202/51-55). The drainage runoff onto our property from Parcel 2 of Parcel Map No. 19013 as shown on the Grading and Drainage Plan for said Parcel 2 prepared by Carl W. Donmoyer and Associates, Inc. and dated April 27, 1988, is acceptable to us.

PARK DEL AMO OWNERS' ASSOCIATION, a California non-profit mutual benefit corporation

By nn cn President m

Corporate Headquarters

2377 Crenshaw Boulevard Suite 300 Torrance, California 90501-3325 (213) 618-3600

Transpacific Development Company

June 9, 1988

CITY OF TORRANCE Grading Division Department of Building and Safety 3031 Torrance Bouevard Torrance, CA 90501

ATTN: Mr. Bill Becker

RE: Acceptance of drainage from Pacel 2 of Parcel Map No. 19013 (P.M.B. 202/51-55)

Gentlemen:

We are the owners of Parcel 3 of Parcel Map No. 19013 (P.M.B. 202/51-55). The drainage runoff onto our property from Parcel 2 of Parcel Map No. 19013 as shown on the Grading and Drainage Plan for said Parcel 2 prepared by Carl W. Donmoyer and Associates, Inc. and dated April 27, 1988, is acceptable to us.

TORRANCE INVESTMENT CO., a general partnership By: CGW&A COMPANY, a general partnership, partner By: CRENSHAW ASSOCIATES, a general

partnership, partner By: SC ENTERPRISES, a limited partnership, partner

By: CA Shur partner general Horney in Fact Date:

Transpacific Development Company

Corporate Headquarters

2377 Crenshaw Boulevard Suite 300 Torrance, California 90501-3325 (213) 618-3600

June 9, 1988

CITY OF TORRANCE Grading Division Department of Building and Safety 3031 Torrance Bouevard Torrance, CA 90501

ATTN: Mr. Bill Becker

RE: Acceptance of drainage from Parcel 2 of Parcel Map No. 19013 (P.M.B. 202/51-55)

Gentlemen:

We are the owners of Lot 7 of Tract No. 44299 (M.B. 1068/53-60). The drainage runoff onto our property from Parcel 2 of Parcel Map No. 19013 as shown on the Grading and Drainage Plan for said Parcel 2 prepared by Carl W. Donmoyer and Associates, Inc. and dated April 27, 1988, is acceptable to us.

Shurl Curci, general partner

6-9-88

TORRANCE INVESTMENT CO., a general partnership By: CGW&A COMPANY, a general partnership, partner By: CRENSHAW ASSOCIATES, a general partnership, partner By: SC ENTERPRISES, a limited partnership, partner

Date:

By:

ney in Sout

TRANSMITTAL

	Date June 30, 1988
To: Mr. Biel 7.	Bocker
City of Jorr	ance
Dent of Bl	de Elite
	2 John
Attention:	
Regarding: 2325 0	endraw Blod So Calif Las property.
Here are: Brochur	es Samples
Shop Dr	awings
Working	Drawings
Sets/Copies	Description
1 copy	May 17, 1988 LeRoy Crandell report.
011	
Remarks: belle	we that this is the only information that you
are missing with	& respect to our site. you have the 11/11/87
report (foundate	in investigation). If we required to submit an
further inform	ation for certification of compartion, please le
/ LJ/For App	roval (Approved as Noted me know.

Correct and Resubmit

Approved as Submitted Thanks. By J. Drein Conley

CITY OF TORRANCE

3031 TORRANDE BOULEVARD, TORRANDE, DALIFORNIA TELEPHONE (213) 618-5880 90503

Telefax No. (213) 618-5891

TRANSMISSION INFORMATION SHEET

THE FOLLOWING PAGES ARE FOR:

Name of Firm:

City and State:

FROM:

ROY J. JACKSON ----

Name of Individual: Claime hovati / S.g. Schafenach Transpacific Development Co TOC _ CA

Bil Becker, City of Jonance, Bldg Degt.

Special Instructions:

TOTAL	NUMBER	OF	PAGES:	<u> </u>
-------	--------	----	--------	----------

(Including Information Sheet)

. . .

DOCUMENTS ARE BEING TRANSMITTED FROM: XEROX 7020

IF THERE ARE ANY PROBLEMS DURING THE TRANSMISSION OF THESE DOCUMENTS, PLEASE CALL (213) 618-5880 AS SOON AS POSSIBLE.

VERIFICATION INFORMATION:

By Whom: Date: _____Time:

PLEASE DELIVER THE FOLLOWING PAGES TO:

	The second s	
The second s		
=	<u> </u>	
2	= 	

Transportific Development Company

jarijski sta i te ad gubrier s

1377 Crenthine Boulevard Suite 300 Torrance, California 20501-3225 27131 616-3600

QWP TRANSMITTAL

NAME . rrank COMPANY 1 PROM: Steve J. Schafenacker COMPANY: Transpacific Development Co. (TDC) PROJECT: CERRITOS TOWNE CENTER TOTAL NUMBER OF PAGES INCLUDING COVER PAGE: IP YOU DO NOT RECEIVE ALL PAGES, PLEASE CALL (213) 618-3656. SOON AS POSSIBLE. ADDITIONAL COMMENTS: If you could fax me an opecuted copy I'd really were appreciate it I believe there were glaine Trova thank Alparia + NO. 320-9242

CARL W. DONMOYER & ASSOCIATES INC.

CIVIL ENGINEERS MAY 17, 1988

LAND SURVEYORS JN 87-67

MR. STEVEN J. SCHAFENACKER TRANSPACIFIC DEVELOPMENT COMPANY 2377 CRENSHAW BOULEVARD, SUITE 300 TORRANCE, CALIFORNIA 90501-3325

Dear Mr. Schafenacker:

As we discussed in our telephone conversation on May 16, 1988, I am sending you copies of the draft drainage acceptance letters for completion by the owners of Lot 7 of Tract No. 44299 and Parcels 1 and 3 of Parcel Map No. 19013, in the City of Torrance. The City of Torrance is requiring the owner of Parcel 2, Southern California Gas Company, to obtain permission from the adjoining property owners for draining onto their property.

The actual portion of Parcel 2 of Parcel Map No. 19013 draining to the adjoining properties consists of an 8-foot wide strip along the westerly property line and a 10-foot wide strip along the northerly property line where fill slopes will be constructed to match the existing ground. Variable width strips along the easterly and southerly property lines are also included. These areas are shown on the Grading and Drainage Plan for Parcel No. 2 prepared by Carl W. Donmoyer & Associates, Inc., dated April 27, 1988, and highlighted on the two copies of the plan which are enclosed for your reference.

The enclosed letters may be reproduced or re-typed on the appropriate letterhead. They should be sent to the City of Torrance, as addressed. We would appreciate receiving copies of the signed letters for our files.

Thank you for your courtesy and cooperation in this matter.

Very truly yours, CARL W. DONMOYER & ASSOCIATES, INC.

Marciuska

AJM/dp Enclosure

> G. Sheri Conley, Southern California Gas Company Won K. Kim, C.H.C.G. Architects, Inc.

609 EAST ALOSTA AVENUE, SUITE B D GLENDORA, CALIFORNIA 91740 D (818) 963-5710 D (818) 335-4046

CARL W. DONMOYER & ASSOCIATES INC.

CIVIL ENGINEERS

LAND SURVEYORS

HYDROLOGY STUDY

AND

HYDRAULIC CALCULATIONS

FOR

PARCEL 2

OF

PARCEL MAP NO. 19013

(P.M.B. 202/51-55)

IN THE CITY OF TORRANCE

PREPARED FOR

SOUTHERN CALIFORNIA GAS COMPANY

C/O C.H.C.G. ARCHITECTS, INC.

9525 MONTE VISTA AVENUE, SUITE 250

MONTCLAIR, CALIFORNIA 91763

SHEET 1 OF 26 MAY 19, 1988 JN 87-67

609 EAST ALOSTA AVENUE, SUITE B 🗆 GLENDORA, CALIFORNIA 91740 🗆 (818) 963-5710 🗆 (818) 335-4046

		· · · · · · · · · · · · · · · · · · ·		
ALGIS J.				
BY MARCIUSKA DATE 5-19	-88 SUBJECT	HYDROLOGY STUDY	AND HYDRAULIC	SHEET NO. 2 OF 26
CHKD. BY DATE	CALCULA	TIONS FOR PARCEL	2 OF PARCEL	JOB NO87-67
MARK S. LAMOUREUX (R.C.E. 38382)	OF TORP	ANCE	<i>52/51-55}, CITY</i>	

TABLE OF CONTENTS

TTEM	SHEET	<u>.</u>
REFERENCES	. 3	· ·
HYDROLOGY STUDY		•
EXISTING DRAINAGE	4	
PROPOSED DRAINAGE	5	· · · · · ·
HYDROLOGY CALCULATION SHEET FOR PROPOSED ON-SITE C.B. NO. 3	6	
HYDROLOGY CALCULATION SHEET FOR PROPOSED ON-SITE STORM DRAIN SYSTEM	7 & 8	
CONFLUENCE ANALYSIS	9	
HYDROLOGY CALCULATION SHEET FOR INLETS	10	
HYDRAULIC CALCULATIONS		
HYDRAULIC CALCULATIONS FOR PROPOSED ON-SITE C.B. NO. 3	11 & 12	
HYDRAULIC CALCULATIONS FOR PROPOSED ON-SITE STORM DRAIN SYSTEM	13 - 22	
LIST OF ABBREVIATIONS FOR HYDRAULIC CALCULATIONS	23	
HYDRAULIC CALCULATIONS FOR INLETS (HEAD REQUIRED)	24	
APPENDIX "A"		; ,
L.A.C.F.C.D. HYDROLOGIC MAP (FIGURE C1.4)	25	
L.A.C.F.C.D. AVERAGE RAINFALL INTENSITY DURATION CURVES (FIGURE C-2)	26	· · ·

HYDROLOGY STUDY MAP

(ATTACHMENT)

÷ .

ALGIS J.

فالمراجب والمستحد والمسترق المراجع المسترج والمسترج والمسترج والمسترج والمسترج والمسترج والمسترج والمسترج والم

BY MARCIUSKA DATE 5-19-88	SUBJECT HYDROLOGY STUDY AND	HYDRAULIC
---------------------------	-----------------------------	-----------

1.1

ALGIS J.		
BY MARCIUSKA DATE 5-19-88	SUBJECT HYDROLOGY STUDY AND HYDRA	ILIC SHEET NO. 2 OF
CHKD, BY	CALCULATIONS FOR PARCEL 2 OF PAR	EL JOB NO. 87-67
MARK S. LAMOUREUX	MAP NO. 19013 (P.M.B. 202/51-55)	
(R.C.E. 38382)	CITY OF TORRANCE	

and the base

مات المروسية والسات والدائين والتناوية والسواب الكلوب إسواب إسراب وال

REFERENCES

- GRADING AND DRAINAGE PLAN FOR PARCEL 2 OF PARCEL MAP NO. 19013 (P.M.B. (1)202/51-55)
- GRADING PLAN FOR TRACT NO. 44299 (BOOK 1068/53-60) (DATED 01-08-86, (2)REVISED 01-05-88) PREPARED BY E.L. PEARSON & ASSOCIATES, INC.
- GRADING PLAN FOR TRACT NO. 43377 (BOOK 1043/60-62) (DATED 08-01-84, (3)REVISED 11-02-87 AND 12-03-87) WITH ATTACHMENT PREPARED BY E.L. PEARSON & ASSOCIATES, INC.
- GRADING PLAN FOR A PORTION OF LOTS 5 AND 6 OF TRACT NO. 44299 (DATED (4) 04-08-87) PREPARED BY DALCIN CUMMINS ASSOCIATES FOR MARRIOTT CORPORATION COURTYARD PROJECT.
- HYDROLOGY STUDY AND HYDRAULIC CALCULATIONS FOR TRACT NO. 44299 STORM DRAIN (5) (M.T.D. 1158) (DATED 02-28-86, REVISED 11-02-87) PREPARED BY E.L. PEARSON & ASSOCIATES, INC.
- ON-SITE HYDROLOGY STUDY MAP FOR TRACT NO. 44299 (DATED 02-28-86, REVISED (6)06-05-86) PREPARED BY E.L. PEARSON & ASSOCIATES, INC.
- STORM DRAIN PLAN FOR TRACT NO. 44299 (CITY OF TORRANCE PLAN NO. S.D. 434, (7)DATED 08-26-86; M.T.D. 1158)
- (8) L.A.C.F.C.D. HYDROLOGY MANUAL (DATED DECEMBER 1971, REVISED OCTOBER 1982)
- KING'S HANDBOOK OF HYDRAULICS (9)
- (10)L.A.C.F.C.D. HYDRAULIC DESIGN MANUAL (DATED MARCH 1982)

ALGIS J.		
BY MARCIUSKA DATE 5-19-88	SUBJECTHYDROLOGY_STUDY_AND_HYDRAULIC	SHEET NO. 7 OF 60
CHKD. BY DATE	CALCULATIONS FOR PARCEL 2 OF PARCEL	JOB NO. 87-67
MARK S. LAMOUREUX	MAP NO. 19013 (P.M.B. 202/51-55), CITY	
(R.C.E. 38382)	OF' TORRANCE	an a shan da a fa mafaa ada ka qaa aha ka bada a shaha a shamaynaa da a aayaa ma ayaa aa aa aa aa ayaa ya

بالإرقاع والفائية إحار

PROPOSED DRAINAGE

THE EXISTING RETENTION BASIN ON PARCEL 2 WAS FILLED IN AND BROUGHT TO PROPOSED ROUGH GRADE IN ACCORDANCE WITH THE APPROVED, REVISED GRADING PLAN FOR TRACT NO. 44299 (REFERENCE ITEM NO. 2). LINE "H" OF THE PROPOSED STORM DRAIN AND INLETS FOR LINES "E-2", "E-3" AND "H-1" WERE TO BE INSTALLED BEFORE THE ROUGH GRADING WAS STARTED. THE DRAINAGE FROM LOT 7 OF 44299 ALONG THE NORTHERLY PROPERTY LINE OF PARCEL 2 WILL BE CONVEYED TO THE INLET ON LINE "H-1" IN GRADED DITCHES. THE PROPOSED PRIVATELY-MAINTAINED CATCH BASIN NO. 2 AT THE TERMINUS OF LINE "H" WILL INTERCEPT & COLLECT THE DRAINAGE FROM PARCEL 1 EAST OF PARCEL 2. THE PROPOSED PARKING AREA ON PARCEL 1 SOUTH OF PARCEL 2 WILL DRAIN TO THE SOUTH AS SHOWN ON THE APPROVED, REVISED GRADING PLAN FOR TRACT NO. 43377, REFERENCE ITEM NO. 3. A PORTION OF THE DRAINAGE FROM PARCEL 3 WILL BE COLLECTED BY THE INLET ON LINE "E-2" OR WILL FLOW TO THE SOUTHWEST AWAY FROM PARCEL 2.

THE PROPOSED DRAINAGE ON-SITE WILL BE COLLECTED BY PRIVATELY-MAINTAINED ON-SITE DRAIN SYSTEMS CONNECTED TO THE PROPOSED PRIVATELY-MAINTAINED CATCH BASIN NO. 3 (LINE "E-3") AND THE PROPOSED PRIVATELY-MAINTAINED CATCH BASIN NO. 2 ON THE EASTERLY PROPERTY LINE OF PARCEL 2. BASED ON A STORM WITH A 50-YEAR RECURRENCE INTERVAL, THE PROPOSED FLOW WILL BE 13 CFS FOR THE PROPOSED CATCH BASIN NO. 3 AND LINE "E-3", IF THE ON-SITE DRAIN LINES OR INLETS PLUG UP. THE ON-SITE DRAIN LINES AND INLETS WERE DESIGNED FOR A 10-YEAR STORM RECURRENCE INTERVAL (SEE SHEETS 13 TO 22), WITH THE MAINLINE STORM DRAIN PEAK FLOW BASED ON A 50-YEAR STORM RECURRENCE INTERVAL. A RUNOFF COEFFICIENT OF 0.95 WAS USED FOR ALL SUBAREAS IN THE CALCULATION OF FLOW RATES. THIS IS CONSISTENT W/ L.A.C.F.C.D. RECOMMENDED COMMERCIAL VALUES, AND IT IS REPRESENTATIVE OF THE ACTUAL PROPOSED SITE IMPROVEMENTS.

		. در منتخبه بو محمد می . در از ماند از ماند از از از	
ALGIS J.			· · · · · · · · · · · · · · · · · · ·
BY MARCIUSKA DATE 5-19-38	SUBJECT HYDROLOGY STUDY	AND HYDRAULIC	SHEET NO. 3 OF 60
CHKD. BY	CALCULATIONS FOR PARCEL	2 OF PARCEL	108 NO 87-67
MARK S. LAMOUREUX	MAP NO. 19013 (P.M.B. 20	2/51-55), CITY	
(R.C.E. 38382)	OF TORRANCE	***************************************	

EXISTING DRAINAGE

THE EXISTING PROJECT SITE (PARCEL 2 OF PARCEL MAP NO. 19013) PREVIOUSLY SERVED AS A RETENTION BASIN FOR LOT 7 OF TRACT NO. 44299 ALONG THE NORTHERLY PROPERTY LINE OF PARCEL 2 AND FOR PARCELS 1 AND 3 OF PARCEL MAP NO. 19013 ALONG THE EASTERLY, SOUTHERLY AND WESTERLY PROPERTY LINES OF PARCEL 2. LOT 4 OF TRACT NO. 34383 ALONG THE NORTHERLY AND NORTHWESTERLY PROPERTY LINES OF PARCEL 2 DRAINS TO THE NORTHWEST AWAY FROM PARCEL 2. THE MARRIOTT CORP. PROJECT ALONG THE SOUTHERLY PROPERTY LINE OF PARCEL 2 IS CURRENTLY UNDER CONSTRUCTION. ACCORDING TO THE APPROVED GRADING PLAN FOR THE MARRIOTT SITE, THAT PROPERTY WILL DRAIN TO THE SOUTH.

THE PROJECT SITE HAS BEEN ROUGH GRADED AND A TEMPORARY STORM DRAIN INLET (LATERAL E-3 OF M.T.D. 1158, REF. ITEM NO. 7) WAS INSTALLED ON-SITE. AN INLET WAS ALSO INSTALLED ON PARCEL 3 TO COLLECT DRAINAGE FROM THAT PROPERTY.

đ

	FREQUEN	CY <u>50</u> 70NF	'EAR "K"		ON-	SITE ((Q 50	CATC	H BAS	sin no 0 min	D. 3		CHEC	KED	BY <u>MARK S. LAMO</u> 1AY 19, 1988
	DRAINAGE AREA	Soli & Developmor	A Acres	in/hr.	С	ΔQ CFS	ΣQ CFS	SLOPE	SEC-	v FPS	L FT.	T MIN.	ΣT MIN.	REMARKS
	$\langle D \rangle$	DID Comm	142				<u> </u>							
\vdash	$\overline{(2)}$	1	<u>A 42</u>	<u> </u>				<u> </u>		·		<u> </u>	┟────	
	(3)		0.42	<u> </u>							ļ			
` ├ ─-	(4)		047					· · · · · · · · ·	<u> </u>			<u> </u>		
-	(5)		0.11		<u> </u>	<u> </u>		<u> </u>		ļ	<u> </u>	ļ		
-	(6)		0.29			<u> </u>				·	 			
	(7)	<u> </u>	0.22			1		<u> </u>	<u>_</u>					
	(8)		0.13	1							 	ł		
	<u>(4)</u>		0.14			<u> </u>		ļ						
	(0)		0.25	<u>}_</u>				<u> </u>			 	- 		
	$\langle II \rangle$		0.27			<u> </u>		<u> </u>						
	(12)		0.23			· ·								· · ·
	(13)		0.19				•						· · ·	
	(4)		0.24					ļ		· · · · · ·				
	(15)		0.11	1	· ·							- <u></u>		
	(16)		0.25											
	(17)		0.03						·					
			-					· ·	<u>.</u>					
		źł	= 4,20	3.25	0.95	13.0							10.0	SIZE INLET &
								<u> </u>		· · ·		<u> </u>		CONNECTOR P.P.
	•													FOR TOTAL TRK
				•						<u> </u>		┨		AREA BASED ON
						[·	<u> </u>			i				50 YR. STORM

·, ·

			1.05	ANCE			INTY	FI		CON	TROL	יות	STRIC	т	- Sht 7 of 26
		PPOISOT	ARCEL Z P.M	n. No.	-сео Нус <i>19013</i>	drolog	y C	alculat PRO	ion POSE	Sheet D	<i>Q10</i>	20.70	$P q_{55} (r$	ER LAC	F(0) ALGIS J.
		FREQUENC	:Y <u><i>10 Yer</i></u> L ZONE	AR "K".		ON-9 (Q	SITE 1 10 W	STOR // INIT	M DR	AIN S [c=10.	YSTE 0 Min	i M I)	CHEC	KED I	BY <u>MARK S. LAMOURE</u> UX Y 19, 1988
		DRAINAGE AREA	Soil & Development	A Acres	 in/hr. (10 YR.)	С	ΔQ C FS	ΣQ CFS	SLOPE	SEC-	v FPS	L FT.	T MIN.	ΣT MIN.	REMARKS
	1-2W "	 (4) (3) (2) 	010-Comm.	0.47 0.42 0.42	2,28 2,24 2,24	0.95 0.95 0.95	1.0 0.9 0.9	1.0 1.9 2.8	2	8"PIPE 8"PIPE LINE	2,9 5,4 "A"	73 68	0.4	10.0 10.4 10.6	(INITIAL SUBAREA)
	1-24 B	$\begin{array}{c} \langle 17 \rangle \\ \langle 16 \rangle \\ \langle 15 \rangle \\ \langle 14 \rangle \\ \langle 13 \rangle \\ \langle 12 \rangle \\ \langle 11 \rangle \\ \langle 10 \rangle \end{array}$	0/0 - Comm. 	0.03 0.25 0.11 0.24 0.19 0.23 0.27 0.25	2.28 2.28 2.28 2.24 2.14 2.07 2.00 2.00	0,95 0.95 0.95 0.95 0.95 0.95 0.95	0.1 0.5 0.2 0.5 0.4 0.5 0.5 0.5	0.1 0.6 0.8 1.3 1.7 2.2 2.7 3.2		8" PIPE 12" PIPE 12" PIPE 12" PIPE 12" PIPE	2.3 1.7 2.2 2.8 3.4	74 100 84 130 26	0.5 1.0 0.6 0.8 0.1	10.0 10.0 10.0 10.5 11.5 12.1 12.1 12.9 13.0	(INITIAL SUBAREA (I7), (I6) \$ (15)) JUNCTION W/ LINES I'C" \$ "G"
	1-25 2	$\begin{array}{c} \langle \boldsymbol{9} \rangle \\ \langle \boldsymbol{8} \rangle \\ \langle \boldsymbol{7} \rangle \\ \langle \boldsymbol{6} \rangle \end{array}$	010-comm.	0.14 0.13 0.22 0.29	2,28 2,28 2,24 2,24 2,24	0.95 0.95 0.95 0.95	0.3 0.3 0.5 0.6	0.3 0.6 1.1 1.7	· · · · · · · · · · · · · · · · · · ·	8"PIPE],7	52	0.5	10.0 10.0 10.5 10.5	(INITIAL SUBAREA (9) \$ (8)) JUNCTION W/ LINES 1'B" \$ "G"
DA - 2		CONFLUENCE LINES "B" & "C" (5) LINE "F"	010-COMM.	0.11	2.00	0.95	0.2	4.7 4.9	n FR	om sh 15"Pipe LINE	EET 9 3.8 "G"	45	0.2	13.0 13.2	JUNCTION W/ LINE "G"

	PROJECT. FREQUENC	<i>PARCE</i> 2, CY <u>10 </u>	lim, CAR "K"	<u>No. 19</u> 0	213			••	· ·		•	CALC CHEC DATE	ULATI	ED BY <u>MARCIUSKA</u> BY <u>MARK S. LAMOUN</u> HY 19, 1988
ŀ	DRAINAGE AREA	Soil & Development	A Acres	1 in/hr.	C	ΔQ C FS	ΣQ CFS	SLOPE	SEC-	V FPS	L FT.	T MIN.	ΣT MIN.	REMARKS
1-2W 0	18) 19)	010- Comm. 010-Comm.	0.09 0.19	2.28 2.28	0.95	0.2 0.4	0.2						10.0 10.0	(INITIAL TC)
	21 > 0 >	010-Сотт. 010-Солт.	0:21 0:31	2,28 2,28	0.95 0.95	0.5	0,5 1.2		-				10.0 10.0	(INITIAL TC)
		<u>Тота</u> NO. 2	- Pio ON	TO C E'LY	. <i>.</i> 3. R. —	7	1.8							
	······································		· · · · · · · · · · · · · · · · · · ·											
									•					
1						[

DA -N

ALGIS J. BY MARCIUSKA DATE 5-19-88 SUBJECT HYDROLOGY STUDY AND HYDRAULIC CALCULATIONS FOR PARCEL 2 OF PARCEL CHKD. BY ... JOB NO. MARK S. LAMOUREUX MAP NO. 19013 (P.M.B. 202/51-55), (R.C.E. 38382) CITY OF TORRANCE LINE "G" TO BASED ON THE 910 ANALYSIS THE CONFLUENCE OF LINES "B" & "C" OF IN WHICH, $P_{10} = Q_1 + \left(\frac{T_1}{T_2}\right)Q_2 \quad AT \quad T_{e_1}$ $I_1 < I_2$ OR TC,: Q,=3,2CFS (13,0 MIN.) I, = 2,00 IN/HR. $Q_{10} = \left(\frac{I_1}{I_2}\right)Q_1 + Q_2 A_T T_{e_2}$ Tez: 92 = 1.7 CFS (10.5min.) I2 = 2.24 W/4R. $Q_{io} = 3.2 + \left(\frac{2.00}{2.24}\right)(1.7) = 4.7 \text{ cFs} \text{ AT } T_{ci}$ $Q = \left(\frac{2.00}{7.24}\right) 3.2 + 1.7 = 4.6 \text{ CFS AT Te}_2$ OR Q_{10} TO LINE "G" = 4.7 CFS AT TC = 13.0 MIN.

	PROJECT FREQUEN ISOHYET	<i>PARCE</i> 2 2, CY_ <u>/0_Ye</u> AL ZONE	Р.м. : А.К '''K ''	Hyc <u>No.</u> 196	irolog 213 (Q 11	у С D FO F	aiculat R INLE	ion TS -	Sheef Tc =	4% 10.0 M	с 070 MIN)	CALC CALC CHEC DATE	(<i>PER 14</i> ULATI KED <u>MA</u>	ACFCO) ALGIS J ED BY <u>MARCIUS</u> BY <u>MARK S. LAN</u> IY 19, 1988
et 2.	DRAINAGE AREA	Soil & Development	A Acres	in/hr.	С	ΔQ C FS	ΣQ CFS	SLOPE	SEC-	V FPS	L FT.	T MIN.	ΣT MIN.	REMARKS
)	$\langle \mathcal{F} \rangle$	010 - Comm.	0.47	2.28	0.95	1.0				1			10.0	· ·
(ZA)	$\langle 3 \rangle$	· ·	0.42	2.28	0.95	0.9	<u> </u>		·					
)	$\langle 2 \rangle$		0.42	2.28	0.95	0.9	<u>}</u>			· .		<u></u>		
(\mathcal{B})	(16)		0.25	2,28	0.95	0.5	}	<u> </u>	<u> </u>		I			
)	(H)		0,24	2.28	0.95	0.5	<u> </u>	<u> </u>					┫	
38)	$\langle 3 \rangle$		0.19	2.28	0.95	0.4]	[
) [$\langle 2 \rangle$		0.23	2.28	0.95	0.5	 					<u></u>		
(GG)	10		0.25	2.28	0.95	0.5					·		{	
) ($\langle q \rangle$		0,14	2.28	0.95	0.3						<u> </u>		-
2	(7)		0.22	2.28	0.95	0.5						<u> </u>		
)	(18)		0.09	2.28	0.95	0,2]							
\mathcal{P}	$\langle S \rangle$	Y	0.11	2.28	0.95	0,2								
			1										-	
			1											
	· · · · · · · · · · · · · · · · · · ·													
								· · · · · ·						
												 		
			†				· · · · · · · · · · · · · · · · · · · ·							
ן ך														
	<u> </u>	-		· · ·										
				····	·						,	 		
			<u>∤</u>	,		··· · · ·					_			

•

• ••

.

MAXIMUM FLOW TO BE ACCEPTED WITH PONDING CONFINED IN THE LOCAL PEPRESSION $Q = 4.3(14)(0.486)(0.48)^{0.6}$ Q= 18.8 CFS > QSO = 13.0 CFS (ADEQUATE)

.

		: · · · ·		
ALGIS J. BY MARCIUSKA DATE 5-19-88 CHKD. BY DATE	SUBJECT HYDROLOGY STUDY CALCULATIONS FOR PARCE	L 2 OF PARCEL	SHEET NO	<u>3</u> or 26
MARK S. LAMOUREUX (R.C.E. 38382)	MAP NO. 19013 (P.M.B. CITY OF TORRANCE	202/51-55),		
ON-SITE PRIVATED	Y- MAINTAINED ST	ORM DRAIN	SYSTEM	
HYDRAULIC GRADE AT ON-SITE O	LINE CONTROL CATCH BASIN NO. 3	(LATERAL REF. ITE	"E-3", Lin M NO. 7	νε "ε")
H.G.L. = 76. (Sheet 11)	87 AT MAINLINE (REF. ITEM	STORM ORAIN NOS. G & 7	STA. 30)	+00:00
H.G.L. C CB. N	0.3 = 76.87 +	BERICTION +	hENTRANCE	
FRICTION LOS	s (br) (FLOWIN	24" R.c.M 1G FULL)	0 L=23,7 F1	r. (SHT. 11)
$Q = \frac{k'}{n} d$	8/3 S _F 1/2 (TABLE REF. ITEN	7-14 n NO.9) Q=	N WHICH, : Q ₅₀ = 13.1	0 cfs (sht. 6)
$S_{f} = \left(\frac{Qn}{k' d'} \right)$	$\left(\frac{3}{3}\right)^2 = \left(\frac{13.0\ (0.0)}{0.463\ (2.0)}\right)^2$	$\frac{(n-1)}{(n-1)^{8/3}}^2 k'$	= 0.463 = 0,015	
S _F	= 0.0044	d	= 24 IN. =	2,00 FT.
$h_F = (S_F)(L) =$	= (0.0044)(23.7)	S,	r= Frictio	DN SLOPE
hE	= 0,10 FT.			
ENTRANCE LOS	$\frac{s}{E}(h_{E})$:
he = Ke ($\frac{V^2}{2g}$)	Ke = 0.5	FLUSH E (REF. IT P. 4-	NTRANCE EM NO.9) 26
= (0.5) (0.26)	$\frac{V^2}{2g} = \frac{(4.1)}{2(3)}$	(, Z, Z)	4.1 FT/S SHT.11)
$h_E = 0$	13 FT.	$\frac{\sqrt{2}}{2g} = 0.2$	26 FT.	
	1	_		

H.G.L. C C.B. NO. 3 = 76.87 + h_F + h_E = 76.87 + 0.10 + 0.13 H.G.L. C C.B. NO. 3 = 77.10

	: JN	87-6	67 - f	PCL. 2	, P.M.	19013	, TORRANC	E (CHC	G/SDCAL	GAS CO.) 		Date:	5/16/1	988	Time:	10:29:28
ile	ENAN	ne:	A:	JN 8	37-6	7 A	·	STORM	DRAIN A	WALYSIS	RESULTS				INE	E "A'	8
ne Io (0,0 (cfs)	D (in)	W (in)	Dn (ft)	Dc (ft)	Flow Type	Sf-full (ft/ft) 	V 1 (fps)	V 2 (fps)	<i>(wv.)</i> FL 1 (ft)	(////.) FL 2 (ft)	HG 1 Calc	HG 2 Calc	D 1 (ft)	D 2 (ft)	TU Calc	7₩ CK
1	Hyd	iraul	ic gra	ade li	ne con	itrol =	77.10	(H.G.L.	AT a	C.B. A	ю. З	, she	ET /	3)		
2	2.8	12	Û	.74	.72	Full	.00822	3.6	3.5	75.25	75.94	77.10	77.66	1.85	1.72	.00	.00
3	1.9	8	C	.67	.62	Full	.03291	5,4	5.4	76.12	76,78	77.55	79.79	1.43	3.01	.00	.00
4	1.0	8	C	,52	.47	Full	.00912	2.9	2.7	76.78	77.47	80.31	80.93	3.53	3.46	.00	.00
5	1,0	8	0	.29	.47	F211	,00912	2.9	2.9	77.47	77.80	81.00	81.05	3.53	3.25	. 81.17	81.30
						ļ	1.G.L.	ΑT	(A)	= 81.0	15 <	81.3	30 (T.O.C	a C	7,5' FI	REEBOA
3	Нус	rauti	ic gra	ade li	ne con	troi =	77.60)	(DR	CAINE	ох (3	\overline{A})					
6	,9	9	C	.29	,45	Full	,0073 9	2.6	2,4	75.94	76.19	77.60	77. GH	1.65	1.45	77.74	80.59
						H.	G.L. A	1 7 (3A) =	77.6	64 -	80.	70 (Т.О.С	- 0.	s' Fre	EBOAR.
4	Hyd	rauli	ic gra	ade li	ne con	trol =	80.05		(DRA	INLOX	((ZA))					
77	.9	8	0	.30	.45	En11	00739	24	9 x	71 70	27.00) / OD OF	<u> </u>	l			•. •.
ليت	•	•	Ū	100	1 70				\sim	/0./G		80,00	80.08	3.27	3.08	80.19	81.00

L.

•

•

SHEET NO. 15 OF 26

,

,

Pro 	ject	: JN 8	7-67 -	PCL, 2, 1	P.M. 1901	3, TORR	ANCE (CH	CG/S0	CAL 0	AS (CO.)			D	ate:	5/ 	16/1	988 		Time	: 10:	29:28
								INPUT	DATA	LI	STING				-							
CD	L2	MAX Q	, ADJ Q	LENGTH	(INV.) FL 1	(1NV.) FL 2	CTL/TW	D	L	S	KJ	KE	KM	LC	LI	L3	L4	AI	A3	A4	J	N
9	1	~~~~				* - * 4	77.10			-												** * *
2	2] 2.8	2,8	38.00	75.25	75.94	.00	12.	٥.	3	.00	.00	.00	1	3	6	0	0.	45.	0.	.00	.015
2	3] 1.9	1,9	68.00	76.12	76.78	.00	s.	0,	3	.00	.00	.00	0	4	7	0	0.	45.	0.	.00	.015
2	4] 1.0	1.0	68.00	76.78	77.47	.00	8.	0.	3	.00	.00	.00	0	5	0	0	45.	0.	0.	.00	.015
2	μ,] 1.0	1.0	5.00	77,47	77.80	81,30	8.	¢.	1	.00	.00	.00	0	0	0	0	0.	0.	Û.	.00	.015
2	6],9	,9	5.00	75,94	76,19	80.69	8.	0.	:	.00	.00	.00	3	0	0	0	0.	0.	0.	.00	.015
2	[7]	.9	,9	5.00	76.78	77.00	81.00	8.	0.	1	.00	.00	.00	4	0	0	Q	0.	0.	Û.	.00	.015

Project : JN 87-67 - PCL. 2, P.M. 19013, TORRANCE (CHCG/SOCAL GAS CO.)

Date: 5/16/1988

Time: 11:17:22

						\$	STORM	DRAIN A	NALYSIS I	RESULTS	LI	NES	5 "G	", "8	** AP	ND "F	It
Line No i	0 _{/0} 0 (cfs)(in)	¥ (in)	Dn (ft)	Dc (4t)	Flow Type	Sf-full (ft/ft)	V i (fps)	V 2 (fps)	(<i>INV.</i>) FL 1 (ft)	(INV.) FL 2 (ft)	HG 1 Calc	HG 2 Calc	SH D 1 (ft)	D 2 (ft)	NO. TW Calc	16 OF TW CK	= 26
1	Hydraul	lic gr	ade Ur	e cor	itro! =	77.10	(н.	G. L.	AT	C.B.	NO.	З,	SHE	T 7	Z-)		. •
2	4.9 15	0	.77	.99	Full	.00766	4,0	4,0	75.00	76.53	77.10	77.86	2.10	1.33	.00	.00	
3	4.7 15 X = 1	0 15.20	.77 X(N) =	.89	Seal .00 X	.00705 ((J) = 3	3.8 6.04	5.1 F(J) =	76.53 1.12	77.19 D(BJ) =	77.90 .79	78.07 D(AJ)	1.37 =	.88 .98	.00	.00 HJ	
4	3.2 12 X =	0 00.	.78 X(N) =	.77 = ;	Full [,74	.01074	4,1	4.1	77.19	77.50	78.60	78.88	1.41	1.38	.00	.00	
5	2.7 12	0	1.00	.70	Full	.00765	3,4	3.4	77.50	77.76	79.01	79.39	1.51	1.63	.00	.00	
6	2.2 12 X =	0 00.	.79 X(N) =	.63 = 7(Full 1,29	.00508	2,8	2,8	77.74	78.21	79.52	79.92	1.76	1.71	.00	.00	
7	1.7 12 X =	0 00.	.34 X(N) =	.55 - 1,	Full 5.58	,00303	2.2	2.2	78.21	78 .67	80.00	80.26	1.79	1.59	.00	.00	
3	1.3 12 X =	0 .00	.53 X(N) =	.48	Full 7.48	.00177	1.7	1.7	78.67	79.26	80.33	80.51	1.66	1.25	.00	.00	
9	.8 8. X =	0. 00.	,46 X(N) =	,42 = !	Full 5.70	.00583	2.3	2.3	79.28	79 .89	80.52	80.96	1.26	1.07	.00	.00	
10	.6 8 X =	0 .00	,42 X(N) =	,36 = 1(Full 1.90	.00328	1.7	1.7	79.39	80.25	81.03	81.23] 1.14	.98	81.27	82.50	
				ŀ.	1.G.L	. Ат		3) =	81.23	<	82,5	0 ((T.O.)	(a l	2.5' F	REEBOA	RD)
3	Hydraul	lic gr	ade i i	ie cor	ntrol =	77.88	(OR AI	NBOX	(F)), L	INE	'F")			· .	
[1]	.2 8 X = 3	0 27.71	,16 X(N) =	.21 = 4	Seal 5.06 X	.00037 ((J) = 4;	.6 3.12	2.2 F(J) =	76.53 .02	78.00 D(BJ) =	77.88	78.21 D(AJ)	1.35	.21 25	78.28	81. 00 HJ	
				Н	.G.L.	AT	(F) = 7	18.21	< 8	?]. 00	(1	<i>г.о.</i> ц,	- 0	1.5' Fi	REEBDA	RO)
5	Hydraul	lic gr	ade lir	ie cor	iro! =	78,95	Q	RAIN	BOX	(5B))							
12	.5 8	Û	.21	,33	Full	.00228	1.4	1,4	77.50		78.95	78.96] 1.45	1.21	78.99	80.75	
				Н	. G. L	. AT	5B)) = 1	78.96	~ <	80.7s	-	(T.O.	G C	2.5' <i>Fi</i>	REEBOA	RD)
7	Hydraul	ic gr	ade lir	ie cor	itro) =	77.96	(DRAM	VBOX	(4B))							
[3]	.58	0	.20	.33 Н	Fuli .G.L.	.00228 AT (1.4 4B)	1.4 = 7°	78.21 9.97	 78.50 < 𝖇	79.96 /. 5 /2	79.97	1.75	1.47	80.00	81.50	001
	(0RA	INBO	x (3B)		\cdot	·	, .	0	,,	τ,				\\$ \$ 1507	~~)
8	Hydraul	lic gr	ade lir	ie con	troi =	80.29	H.G	.L. A	IT 3B) = 80	,30 <	- 8	2.35	(7.0.0	<i>0</i> ,	S'FREEB	DARD
14	.4 8	9	.14	. 29	Full	.00146	* *	1.1	78,67	79.35	80.29	80.30	1.62	.95	80.32	82.35	

			SHEET	NO. 17 OF
Project : JN 87-67 - PCL. 2	, P.M. 19013, TORRANCE (CHCG/SODAL GAS CO.)	Date:	5/16/1988	Time: 11:17:22
	STORM DRAIN ANALYSIS RESULTS			
Line 0 ₁₀ D W Dn No (cfs) (in) (in) (ft)	Dc Flow Sf-full V 1 V 2 FL 1 FL 2 HG (ft) Type (ft/ft) (fps) (fps) (ft) (ft) Ca	1 HG 2 1c Calc	D 1 D 2 (ft) (ft)	? TW TW Calc CK

Hydraulic grade line control = 80.51 (DRAINBOX (B)) 15 .3 8 0 .20 .33 Full .00228 1.4 1.4 79.26 79.65 80.51 80.53 1.25 .88 80.56 82.15 H.G.L. AT (2B) = 80.53 = 82.15 (T.O.G. - O.S' FREEBOARD)

ò

SHEET NO. 18 OF 26

<u>م</u> م	ject	: JN 87	7-67 -	PCL. 2, 1	P.M. 1901	3, TORR	ANCE (CH	ICG/90	CAL G	ias I	:0.)			D	ate:	5/	16/1	988		Time	: 11:	17:22
								INPUT	- <u>1</u> 474		STING											
CD	L2	MAX D	ADJ G	LENGTH	(INV.) FL 1	(INV. FL 2) CTL/TW	D	W	5	KJ	ĸe	RM	LC	LI	L3	14	Ai	A3	A4	J	N
8	1						77,10			-												
2	2	4,9	4.9	99,00	75.00	76.53	.00	15,	0.	3	.00	.00	.00	1	3	11	0	0.	45,	0.	.00	.015
2	3	4.7	4.7	45.00	76.53	77.19	.00	15.	0.	3	.00	.00	.00	0	4	Û	0	45,	0.	ð.	.00	,015
2	4	3.2	3.2	2á.00	77,19	77.50	36,75	12.	0.	3	.00	.00	.00	Û	5	0	12	θ,	9.	45.	.00	.015
2	5	2.7	2.7	50.90	77.50	77.76	.00	12.	Q,	3	.00	.00	.90	C	6	0	0	0.	0.	0.	.00	.015
2	6	2.2	2.2	89.00	77.76	78.21	81,50	12.	0.	3	.00	.00	.00	0	7	Û	13	0.	0.	45.	.00	.015
2	7	1.7	i.7	84.00	78.21	78.67	82.35	12.	0.	3	.00	.00	.00	0	8	0	14	45.	0.	45.	.00	.015
2	3	1.3	1.3	100.00	78.67	79.26	82,15	12.	0.	3	.00	.00	.00	0	9	0	15	45.	0.	45.	.00	.015
2	9	.8	.8	75.00	79.26	79.89	.00	8,	0.	3	.00	.00	.00	0	10	0	0	0.	0.	0.	.00	.015
2	10	.5	.6	59.00	79.89	80,25	82,50	8,	0,	1	.00	.00	.00	0	0	0	0	45.	0.	0.	.00	.015
2	11	.2	.2	59,00	76,53	78.00	81.00	8,	0.	د 1	.00	.00	.00	3	G	0	Ũ	0.	0.	0.	.00	.015
2	12	.5	.5	5.00	77.50	77.75	80.75	8.	0,	1	.00	.00	.00	5	0	0	0	0.	0.	0.	.00	.015
2	[]	, L	,5	5,00	78.21	78.50	81.50	8.	0.	1	.00	.00	.00	7	0	0	0	0.	0.	Ο.	.00	.015
2	14	,4	.4	5.00	78.67	79.35	82.35	3,	Û,	1	.00	.00	.00	8	0	0	0	0.	0,	0.	,00	.015
2	15	.5	.5	7.00	79.26	79.65	82.15	8.	9,	1	.00	.00	.00	9	C	0	0	0.	0.	0.	.00	.015

.

. .

•

· ·

							STORM D)RAIN 4	NALYSIS	RESULTS				LIN	1E "(×11 2
0 /0 fs)	0 (in)		Dn (ft) 	Dc (ft) 	Flow Type	Sf-fu ll · (ft/ft) 	V 1 (fps)	V 2 (fps)	(iNV.) FL 1 (ft)	<i>(wv.)</i> FL 2 (ft)	HG 1 Calc	HG 2 Calc	D 1 (ft)	D 2 (ft)	TW Calc	TW CK
Hyd	raul	ic gr.	ade li	ne cor	itrol =	78.07	(н.с	a.L.	AT d	CONFLU	ENCE	W/ L	INE "	"G",	SHEET	- 16)
i.7 χ=	12	0 ,00	.57 X(N)	.55 ≠ 58	Part 1.96	.00303	2.3	3,7	77,19	77.69	78.07	78.26	.82	.57	.00	.00
1,1 X =	6	0 ,00	,43 X(N)	.50 = 5	Fuli .97	.0:103	3.2	3.2	77.69	77.92	78.55	78.68	.96	.76	.00	.00
 X =	8	0 .00	,41 χ(Ν)	.36 = {	Full 6.05	.00328	1.7	* . ? * . ?	77,92	78.26	78.86	79.03	,94	.77	.00	.00
.3 X =	8	0 .00	.31 X(N)	,25 = 9	Fuli 7,51	.00082	,9	.9	78.26	78.40	79,10	79.12	. 84	.72.	.00	.00
.3 X ≃	8	0 66.	,13 X(N)	.25 =	Sea) .00 X	.00082 (J) =	,9 2,90 F	2.5 (j) =	78.40 .35	79.15 D(BJ) =	79.13 .15	79.40 D(AJ)	.73 .73	.25 40	79.50	82.25 H
	0 fs) Hyd 1.7 X = .6 X = .3 X = .3 X =	0, 0 fs) (in) Hydraul 1.7 12 X = 1.1 8 X = .6 3 X = .3 8 X = .3 8 X =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0_{10} 0 W Dn Dc Flow Sf-full fs) (in) (in) (ft) (ft) Type (ft/ft) Hydraulic grade line control = 78.07 1.7 12 0 .57 .55 Part .00303 X = .00 X(N) = 58.96 1.1 8 0 .43 .50 Full .01103 X = .00 X(N) = 5.97 .6 8 0 .41 .36 Full .00328 X = .00 X(N) = 8.05 .3 9 0 .31 .25 Full .00082 X = .00 X(N) = 9.51 .3 8 0 .13 .25 Seal .00082 X = .60 X(N) = .00 X(J) =	0_{M} 0 0 0 0 0 0 0 0 0 1	0_{10} 0 W Dn Dc $Flow$ $Sf-full$ U U U fs (in) (in) (ft) (ft) $Type \cdot (ft/ft)$ (fps) (fps) Hydraulic $grade$ $Iine$ $control$ $=$ 78.07 $(H.G.L.$ 1.7 $I2$ 0 $.57$ $.55$ $Part$ $.30303$ 2.3 3.7 $X =$ $.90$ $X(N)$ $=$ 58.96 $.01103$ 3.2 3.2 1.1 8 0 $.43$ $.50$ $Full$ $.01103$ 3.2 3.2 $X =$ $.00$ $X(N) =$ 5.97 $.00328$ 1.7 1.7 $A =$ $.00$ $X(N) =$ 8.05 $.00328$ 1.7 1.7 $X =$ $.00$ $X(N) =$ 9.51 $.00082$ $.9$ 2.5 $X =$ $.00$ $X(N) =$ $.00$ $X(J) =$ 2.98 $F(J) =$ $.74$ $.44$	$\begin{array}{c} (mV.) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (MV.) & (MV.) \\ (MV.) & (HV.) \\ FL 1 & FL 2 & HG 1 & HG 2 \\ FS & (in) & (in) & (ft) & (ft) & Type & (ft/ft) & (fps) & (fps) & (ft) \\ \hline \\ Hydraulic grade line control = & 78.07 & (H.G.L. & AT CONFLUENCE & W/L \\ 1.7 & 12 & 0 & .57 & .55 & Part & .00303 & 2.3 & 3.7 & 77.19 & 77.69 & 78.07 & 78.26 \\ X &= & .00 & X(N) &= & 58.96 \\ \hline \\ 1.1 & 8 & 0 & .43 & .50 & Full & .01103 & 3.2 & 3.2 & 77.69 & 77.92 & 78.55 & 78.68 \\ X &= & .00 & X(N) &= & 5.97 \\ \hline \\ .6 & 8 & 0 & .41 & .36 & Full & .00328 & 1.7 & 1.7 & 77.92 & 78.26 & 78.86 & 79.03 \\ X &= & .00 & X(N) &= & 8.05 \\ \hline \\ .3 & 8 & 0 & .31 & .25 & Full & .00082 & .9 & .9 & 78.26 & 78.40 & 79.10 & 79.12 \\ X &= & .60 & X(N) &= & 9.51 \\ \hline \\ .3 & 8 & 0 & .13 & .25 & Seal & .00082 & .9 & 2.5 & 79.40 & 79.15 & 79.13 & 79.40 \\ X &= & .60 & X(N) &= & .00 & X(J) &= & 2.98 & F(J) &= & .05 & D(BJ) &= & .15 & D(AJ) \\ \hline \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (\mathcal{WU}, \mathcal{V}, \mathcal{W}, \mathcal{V}) \\ \begin{array}{c} (\mathcal{WU}, \mathcal{V}) \\ (\mathcal{H}, \mathcal{W}, \mathcal{V}) \\ (\mathcal{H}, \mathcal{V}, \mathcal{V}) \\ (\mathcal{H}, \mathcal{H}) $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

c grade line control = 78.77

.

 7
 .5
 8
 0
 .18
 .33
 Seal
 .00228
 1.4
 2.7
 77.92
 78.40
 78.77
 78.73
 .85
 .33
 78.86
 80.90
 HJ

 X =
 1.96
 X(N) =
 .00
 X(J) =
 4.36
 F(J) =
 .07
 D(BJ) =
 .29
 D(AJ) =
 .38

H.G.L. AT (2) = 78.73 < 80.90 (T.O.G. - 0.5' FREEBOARD)

. .

SHEET NO. 20 OF 26

		: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		PUL, 2,	P.M. 1981	3, !ORN	ANCE (CH	(CG/SQ	ICAL (3AS	co.) 			D	ate:	5./	16/1	988		Time): 12: 	5: 2
								1NPUT	DATA	A LI	STING											
CD	L2	MAX 0	ADJ 0	LENGTH	(INV.) FL 1	(INV.) FL 2) CTL∕T₩	D	tu)	S	KJ	KE	ĸM	LC	LI	L3	L4	AI	A3	A4	J	N
8	1						78.0?			•												
2	2] 1.7	17	64.00	77,19	77.69	.00	12.	С.	3	.00	.00	.00	1	3	0	0	45.	0.	0.	.00	.015
2	3] 1.1	1.1	12.00	77.69	77.92	.00	8.	8.	3	.00	.00	.00	0	4	7	C	0.	45.	Ċ.	.00	.015
2	4	ه. [.6	52.00	77.92	78.25	.00	8.	0.	3	.00	.00	.00	0	5	0	0	0.	.0,	0.	.00	.015
2	5] .3	.3	32.90	78.26	78.40	.00	8.	9,	3	.00	.óo	.00	0	6	C	8	45,	0.	0,	.00	.015
2	E].3	-3	7.00	78.49	79,15	82,25	8,	â.	• •	.60	.00	.00	0	0	0	0	0,	С.	С.	.00	.915
2	7].5	.5	5.90	77.92	78.40	80,90	8.	ð.	ţ	.00	.00	.00	4	0	n	Û	Ĥ.	θ.	ſ.	66	015

. · · ·

, · · ·

•

SHEET NO. 21 OF 26

. .

D W in) (in)	Dn	Dc F ft) T 	l cw Ype	Sf-fu]]	STORM I	DRAIN A	NALYSIS (RESULTS			LI	NE	" E "	
D W in) (in)	Dn (ft) (Dc F ft) T	1сы Уре	Sf-fu]] (4+74+)	V 1	ປາ	(INV.)	(INV.)						
				VF(ZFC)	(fps)	(fps)	FL 1 (7t)	FL 2 (ft)	HG 1 Calc	HG 2 Calc	0 1 (ft)	D 2 (ft)	TW Calc	Тұ СК
aulic gra	ade line	contr	•o] =	79.30	(н	.G.L.	AT	GB.	NO.	2 (R	eF l	TEM	10.7)
8 0	.51	.52 5	u}}	.01313	3.4	3.4	77.97	78.03	79.30	79.35	1.33	1.32	.00	.00
8 C 5.20	.17 X(N) =	.36 S	Geal 10	.00328	1.7	2.0	78.39	79.19	79.72	79.72	1.42	.53	.00	.00
8 0	.22	.21 P	Part	.08037	. ć	.8	79.19	79.40	79.83	79.84	.64	.44	79.85	81.90
	80 80 5.20 80	8 0 .51 8 0 .17 5.20 X(N) = 8 0 .22 <i>H</i> ,C	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	8 0 .51 .52 Full 8 0 .17 .36 Seal 5.20 $X(N) = .00$ 8 0 .22 .21 Part $H_iG_iC_i$	8 0 .51 .52 Full .01313 8 0 .17 .36 Seal .00328 5.20 $X(N) = .00$ 8 0 .22 .21 Part .00037 H.G.C. AT (2	8 0 .51 .52 Full .01313 3.4 8 0 .17 .36 Seal .00328 1.7 5.20 $X(N) = .00$ 8 0 .22 .21 Part .00037 .6 H.G.L. AT (D) =	8 0 .51 .52 Full .01313 3.4 3.4 8 0 .17 .36 Seal .00328 1.7 2.0 5.20 $X(N) = .00$ 8 0 .22 .21 Part .00037 .6 .8 H.G.L. AT (D) = 799	8 0 .51 .52 Full .01313 3.4 3.4 77.97 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 5.20 X(N) = .00 8 0 .22 .21 Fart .00037 .6 .8 79.19 H.G.L. AT (D) = 79.84	8 0 .51 .52 Full .01313 3.4 3.4 77.97 78.03 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 79.19 5.20 $X(N) = .00$ 8 0 .22 .21 Part .00037 .6 .8 79.19 79.40 H.G.L. AT $(D) = 79.84 < 81.20$	8 0 .51 .52 Full .01313 3.4 3.4 77.97 78.03 79.30 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 79.19 79.72 5.20 $X(N) = .00$ 8 0 .22 .21 Part .00037 .6 .8 79.19 79.40 79.83 H.G.L. AT (D) = 79.84 < 81.90	8 0 .51 .52 Full .01313 3.4 3.4 77.97 78.03 79.30 79.35 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 79.19 79.72 79.72 5.20 $\chi(N) = .00$ 8 0 .22 .21 Part .00037 .6 .8 79.19 79.40 79.83 79.84 H.G.L. AT (D) = 79.84 < 81.90 (T.O	8 0 .51 .52 Full .01313 3.4 3.4 77.97 78.03 79.30 79.35 1.33 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 79.19 79.72 79.72 1.42 5.20 $\chi(N) = .00$ 8 0 .22 .21 Part .00037 .6 .8 79.19 79.40 79.83 79.84 .64 H.G.L. AT $(D) = 79.84 < 81.90$ (T.O.G	8 0 .51 .52 Full .01313 3.4 3.4 77.97 78.03 79.30 79.35 1.33 1.32 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 79.19 79.72 79.72 1.42 .53 5.20 $X(N) = .00$ 8 0 .22 .21 Part .00037 .6 .8 79.19 79.40 79.83 79.84 .64 .44 H.G.L. AT $(D) = 79.84 - 81.90$ (T.O.G O.S	8 0 .51 .52 Full .01313 3.4 3.4 77.97 78.03 79.30 79.35 1.33 1.32 .00 8 0 .17 .36 Seal .00328 1.7 2.0 78.30 79.19 79.72 79.72 1.42 .53 .00 5.20 $X(N) = .00$ 8 0 .22 .21 Fart .00037 .6 .8 79.19 79.40 79.83 79.84 .64 .44 79.85 H.G.L. AT (D) = 79.84 < 81.90 (T.O.G O.S' FRE

•

.

Project	: ; JN 87-57	- PCL. 2,	P.M. 1901	3, TORRANCE (CH	CG/SD	CAL G	i45 (0	ate:	5/	16/1	988		Time	: 12:	38:13
					INPUT	DATAC		671NG											
SD L2	MAX Q ADJ	9 LENGTH	(INV.) FL 1	(INV.) FL 2 CTL/TW	9	Į.	5	KJ	KE	KM	LC	L1	L3	L4	A1	A3	A4	J.	N

۰. ۰.

			****			~~~~				-												
3	1						79.30															
2	2	1.2	1.2	4.00	77.97	78,03	.00	9.	0.	3	.00	.00	.00	1	3	0	0	90.	0.	Ĵ.	.00	1815
5	3	.ა	.6	6.00	78.30	79.19	.00	8,	0,	3	.00	.00	-00	0	4	0	9	45.	0,	0.	.00	.015
2	4	.2	.2	34,99	79.19	79.40	81.90	8.	Ø.	4	.00	.90	.00	0	0	0	0	0.	0,	0.	.00	.015

,

•

•

ň

SHEET NO. 23 OF 26

LIST OF ABBREVIATIONS

V 1, FL 1, D 1 and HB 1 refer to downstream end

V 2, FL 2, D 2 and HG 2 refer to upstream end

X - Distance in feet from downstream end to point where HC intersects soffit in seal condition

X(N) - Distance in feet from downstream end to point where water surface reaches normal depth by either drawdown or backwater

X(J) - Distance in feet from downstream end to point where hydraulic jump occurs in line

F(J) - The computed force at the hydraulic jump

D(BJ) - Depth of water before the hydraulic jump (upstream side)

D(AJ) - Depth of water after the hydraclic jump (downstream side)

SEAL indicates flow changes from part to full or from full to part

HJ indicates that flow changes from supercritical to subcritical through a hydraulic jump

HJU indicates that hydraulic jump occurs at the junction at the upstream end of the line

HUD - indicates that hydraulic jump occurs at the junction at the downstream end of the line
А́І ву мл снко. <u>Мл</u> (т	ARCIUSKA DA ARCIUSKA DA ARK S. LAMO R.C.E. 3838 DRAULIC	TE <u>5-19-88</u> UREUX 2) CALCULA	SUBJEC CALC MAP CITY	HYDRO ULATIONS NO. 1901 OF TORR FOR	LOGY STUDY AND I FOR PARCEL 2 OI 3 (P.M.B. 202/5 ANCE WLETS	HYDRAULIC F PARCEL 1-55), (HEAO RE	sheet no. 2 јов no. 8 ФИ, RED	<u>4 of 26</u> 767
(1) INLET NO.	(2) GRATE SIZE	(3) NET AREA (FT ²)	(4) 2 ₁₀ (CFS)	(5) V (FT/S)	(6) HEAD LOSS 1.2(V ² /2g) (F	(7) • T.O.G. F.) ELEV.	(8) PONDING ELEV.	(9) DRAINAGE RELEASE ELEV.
(LA)	24"X24"	1.00	1.0	1.0	0.02	81.80	81.82	81.92 E.G.
(A)	24"X24"	1.00	0.9	0.9	0.02	81.50	81.52	81.63 E.G.
3A	24"X24"	1.00	0.9	0.9	0.02	81.20	81.22	81.33 E.G.
B	24"X24"	1.00	0.5	0.5	0.01	83.00	83.01	83.50 F.S.
2B	24"X24"	1.00	0.5	0.5	0.01	82.65	82.66	82.84 F.L.
3B	24"X24"	1.00	0.4	0.4	0.01	82.85	82.86	83.20 A.C.
4 B	24"X24"	1.00	0.5	0.5	0.01	82.00	82.01	82.50 A.C.
6 B	24"X24"	1.00	0.5	0.5	0.01	81.25	81.26	82.00 A.C.
Θ	18"X18"	0.56	0.3	0.5	0.01	82.15	82.16	82.65 T.C.
õ	24"X24"	1.00	0.5	0.5	0.01	81.40	81.41	81.95 A.C.
Õ	18"X18"	0.56	0.2	0.4	0.01	82.40	82.41	82.8 F.G.
Ē	24"X24"	1.00	0.2	0.2	0.01	81.50	81.51	81.95 A.C.

.

NOTES

1.5

(1) INLET NUMBER AS SHOWN ON ATTACHED HYDROLOGY STUDY MAP (APPENDIX "B").

- (2) GROSS DIMENSIONS OF DRAINBOX GRATE.
- (3) NET AREA OF GRATE OPENING (NET DIMENSIONS OF THE GRATE OPENING ARE ASSUMED TO BE 1/2 OF THE GROSS DIMENSIONS): FOR 24"X24" GRATE, NET AREA = 1.00 FT. X 1.00 FT. = 1.00 FT² FOR 18"X18" GRATE, NET AREA = 0.75 FT. X 0.75 FT. = 0.56 FT²
- (4) FLOW RATES (Q₁₀) BASED ON A TIME OF CONCENTRATION OF 10 MINUTES (MIN. FOR SMALL SUBAREAS, PER L.A.C.F.C.D.) AND A 10-YEAR STORM INTENSITY. (SEE SHEET //).
- (5) VELOCITY DETERMINED USING Q_{10} AND NET AREA.
- (6) HEAD LOSS DUE TO THE GRATE (PONDING).
- (7) TOP OF GRATE ELEVATION.
- (8) WATER PONDING ELEVATION = $(T.O.G. \, \Theta.EV. + HEAD \, LOSS)$.
- (9) DRAINAGE RELEASE ELEVATION.

COPY ZUFZ. TEAM WORKING

REPORT OF FOUNDATION INVESTIGATION PROPOSED SOUTH COASTAL DIVISION HEADQUARTERS BUILDING CRENSHAW BOULEVARD AND SEPULVEDA BOULEVARD TORRANCE, CALIFORNIA FOR THE SOUTHERN CALIFORNIA GAS COMPANY (OUR JOB NO. A-87413)

NOV 1 7 1987

ł

ł

Chicg

LEROY CRANDALL AND ASSOCIATES geotechnical consultants D p.o. box 25088 D 900 grand central ave. D glendale, ca. 91201-3009 a subsidiary of Law Engineering facsimile (818) 246-4308 telephone (818) 243-4140

November 16, 1987

Southern California Gas Company Engineering Services Department Box 3249, Terminal Annex Los Angeles, California 90051

SoCal Contract No. 1752 (Our Job No. A-87413)

Attention: Ms. G. Sheri Conley, P.E. Staff Engineer Civil/Architectural Design Engineering Services Department

Gentlemen:

Our "Report of Foundation Investigation, Proposed South Coastal Division Headquarters Building, Crenshaw Boulevard and Sepulveda Boulevard, Torrance, California, for the Southern California Gas Company" is herewith submitted.

The scope of the investigation was planned in collaboration with Ms. G. Sheri Conley. Information regarding the structural features of the proposed building and the requirements for the investigation were furnished us by Mr. James Thompson of Thompson and LaBrie, Structural Engineers, and by Mr. Mark S. Lamoureux of Carl W. Donmoyer & Associates, Civil Engineers.

Existing fill soils were not encountered in the borings drilled within the proposed building area. Compacted fill soils, six to eight feet in thickness, were encountered in three of the borings located in the proposed parking area. The natural soils beneath the site consist of silty sand, clayey sand, and clay. The upper natural soils are only moderately firm at present moisture content and would become weaker and more compressible when wet. The soils become firmer and less adversely affected by water with depth. We recommend that any uncompacted fill soils and the upper natural soils be excavated and compacted and that the required additional fill be properly compacted. If the grading recommendations are followed, the proposed building may be supported on spread footings established on properly compacted fill. Southern California Gas Company Page 2 November 16, 1987 (Our Job No. A-87413)

Recommendations for foundation design, for grading, and for floor slab and paving support are presented in the report. The results of corrosion studies by M. J. Schiff & Associates are also presented.

by

Respectfully submitted,

LeROY CRANDALL AND ASSOCIATES

marchall for

Marshall Lew, Ph.D. Senior Engineer/Vice President

X87/MD/ge (3 copies submitted)

- cc: (2) CHCG Architects Inc. Attn: Mr. Dasol Mashaka
 - (1) There are a 1 Label
 - (1) Thompson and LaBrie
 - (1) Carl W. Donmoyer & Associates

REPORT OF FOUNDATION INVESTIGATION PROPOSED SOUTH COASTAL DIVISION HEADQUARTERS BUILDING CRENSHAW BOULEVARD AND SEPULVEDA BOULEVARD

TORRANCE, CALIFORNIA

FOR THE

SOUTHERN CALIFORNIA GAS COMPANY

<u>SCOPE</u>

This report presents the results of a foundation investigation of the site of the subject proposed division headquarters building. The locations of the proposed building and our exploration borings are shown on Plate 1, Plot Plan. Also shown are the locations of borings drilled during prior investigations for the adjacent site developments (our Job Nos. ADE-81164 and A-83343).

This investigation was authorized to determine the static physical characteristics of the soils beneath the site for design purposes and to provide recommendations for foundation design and floor slab support for the proposed building. We were also to provide paving design data. The scope of this investigation did not include geologic and seismic studies for the site. Accordingly, our conclusions and recommendations are for static loading conditions only; however, this does not imply that there is a geologic or seismic hazard affecting the site. The results of the field explorations and laboratory tests, which form the basis of our recommendations, are presented in the attached

Appendix. The corrosion potential of the on-site soils was investigated for us by M. J. Schiff & Associates; the results of their study are presented in the Appendix.

Our professional services have been performed using that degree of care and skill ordinarily exercised, under similar circumstances, by reputable geotechnical engineers practicing in this or similar localities. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has been prepared for the Southern California Gas Company and their design consultants to be used solely in the design of the proposed building. The report has not been prepared for use by other parties, and may not contain sufficient information for purposes of other parties or other uses.

STRUCTURAL CONSIDERATIONS

The proposed building, which is shown in plan on Plate 1, will be one story high and of steel frame construction. Maximum column loads will be on the order of 90 kips and wall loads will be on the order of 2 kips per lineal foot.

The floor of the building will be established at about the existing grade. There will be a large paved area for surface parking located to the west of the proposed building.

SITE CONDITIONS

The proposed building area and proposed parking area are currently vacant. There are large stockpiles of fill in the proposed parking area; the approximate limits of the stockpiles are shown on Plate 1.

SOIL CONDITIONS

Existing fill soils were not encountered in the borings drilled within the proposed building area. Compacted fill soils, six to eight feet in thickness, were encountered in Borings 7, 8, and 9 in the proposed parking area. The fill consists of silty sand and was firm at the boring locations. The fill was placed during grading for the adjacent development, which was observed and tested by our firm (our Job No. B-86213). The approximate limits of the compacted fill are shown on Plate 1.

The natural soils beneath the site consist of silty sand, clayey sand, and clay. The upper natural soils are only moderately firm at present moisture content and would become weaker and more compressible when wet. The soils become firmer and less adversely affected by water with depth.

Water seepage was encountered at depths of 10 and 14 feet in two of the exploration borings.

Petroleum stains and odors were noted at random depths in Boring 4. Tests to determine the extent or type of any hazardous materials beneath the site were not within the scope of this investigation.

RECOMMENDATIONS

FOUNDATIONS

<u>General</u>

The compacted fill soils encountered in Borings 7, 8, and 9 are firm; this fill was observed and tested by our firm during placement. The upper natural soils are only moderately firm at present moisture content and would become weaker and more compressible with increase in moisture content. The deeper soils are generally firm and dense.

We recommend that any uncompacted fill soils and the upper natural soils be excavated and compacted and that the required additional fill be properly compacted. If the grading recommendations are followed, the proposed building may be supported on spread footings established on properly compacted fill.

Recommendations for grading are presented in a following section. The excavation of the upper soils and the compaction of all required fill should be observed and tested by personnel of our firm.

Bearing Values

Footings for the building established in properly compacted fill may be designed to impose a net dead plus live load pressure of 3,000 pounds per square foot. A one-third increase may be used for wind or seismic loads. Footings should extend to a depth of at least two feet below the adjacent final grade or floor level, whichever is lower.

If desired, any loading dock walls or low retaining walls may be supported on shallower footings using a lesser bearing value. Footings

for such light loads established in properly compacted fill and extending at least one foot below the lowest adjacent grade may be designed to impose a pressure of 1,500 pounds per square foot.

Since the recommended bearing values are net values, the weight of concrete in the footings may be assumed to be 50 pounds per cubic foot, and the weight of soil backfill may be neglected when determining the downward load on the footings.

While the actual bearing value of the compacted fill will depend on the material used and the compaction methods employed, the quoted bearing values will be applicable if acceptable soils are used and are properly compacted. The bearing value of the compacted fill should be confirmed after completion of the grading.

The settlement of the proposed building, supported on spread footings in the manner recommended, will be on the order of one-half inch. Differential settlement between adjacent columns is expected to be one-fourth inch or less.

Lateral Loads

Lateral loads may be resisted by soil friction on footings and the floor slab and by the passive resistance of the soils. A coefficient of friction of 0.5 may be used between footings or the floor slab and the supporting soils. The passive resistance of the properly compacted fill against footings may be assumed to be 300 pounds per cubic foot. A one-third increase in the passive value may be used for wind or

seismic loads. The frictional resistance and the passive resistance of the soils may be combined without reduction in determining the total lateral resistance.

Footing Observation

To verify the presence of satisfactory soils at design elevations, all footing excavations should be observed by personnel of our firm. All required footing backfill and all utility trench backfill should be mechanically compacted; flooding should not be permitted. <u>GRADING</u>

To provide improved support for spread footings, the building floor slab, and paving, any uncompacted fill should be excavated, the underlying natural soils should be reworked, and all required fill should be properly compacted. To provide support for shallow spread footings, the upper natural soils beneath footings should be excavated and replaced as compacted fill; footings should be underlain by at least three feet of compacted fill. The approximate limits of the fill tested by our firm are shown on Plate 1. The stockpiled fill has not been compacted and should be removed.

After clearing the site and removing the existing fill and vegetation, all uncompacted fill soils and disturbed natural soils should be excavated. Within footing areas and five feet beyond in plan, the soils should be excavated to a depth of at least three feet below the footing bottoms; the excavations should extend at least five feet beyond the footings in plan.

After excavating as recommended, the exposed soils should be inspected by our personnel to verify the removal of all unsuitable deposits. Next, the exposed natural soils should be scarified to a depth of at least six inches and rolled with heavy compaction equipment. The upper six inches of exposed natural soils should be compacted to at least 90% of the maximum density obtainable by the ASTM Designation D1557-70 method of compaction.

After compacting the exposed soils, the required fill should be placed in horizontal lifts not more than eight inches in thickness and compacted to at least 90%. The soils should be compacted at a moisture content varying no more than 2% below or above optimum moisture content.

The on-site soils, less any debris or organic matter within the existing fill, may be used in the required fills. Any required imported fill should consist of relatively non-expansive soils. The Expansion Index of the material should be less than 35. The material should contain sufficient fines (binder material) so as to be relatively impermeable when compacted to result in a stable subgrade.

The excavation of the fill, the reworking of the underlying soils, and the compaction of all required fill should be observed and tested by our firm. All required fill material should be approved for use prior to placing and compacting.

The governmental agencies having jurisdiction over the project should be notified prior to commencement of grading so that the necessary grading permits may be obtained and arrangements may be made for the required inspection(s).

WALLS BELOW GRADE

For design of any building walls used as low retaining walls, it may be assumed that the soils will exert a lateral pressure equal to that developed by a fluid with a density of 30 pounds per cubic foot.

All required backfill should be mechanically compacted in layers; flooding should not be permitted. Proper compaction of the backfill will be necessary to minimize settlement of the backfill and to minimize settlement of overlying slabs, walks, and paving. Backfill should be compacted to at least 90% of the maximum density obtainable by the ASTM Designation D1557-70 method of compaction.

FLOOR SLAB SUPPORT

If the subgrade is prepared as recommended, the building floor slab and adjacent walks and slabs may be supported on grade. If a floor covering that would be critically affected by moisture, such as vinyl, is to be used, we suggest that the floor slab be supported on a fourinch-thick layer of gravel or on a membrane as a capillary break. A suggested gradation for the gravel layer would be as follows:

<u>Sieve Size</u>	Percent Passing
3/4"	90 - 100
No. 4	0 - 10
No. 100	0 - 3

If a membrane is used, a low-slump concrete should be used to minimize possible curling of the slab. The concrete slab should be allowed to cure properly before placing vinyl or other moisture-sensitive floor covering.

PAVING

The California Bearing Ratio test indicated a CBR value of 13 for the on-site soils when compacted to 90%. The results of the test are presented in the Appendix.

Compaction of the subgrade to at least 90%, including trench backfills, will be important for paving support. The preparation of the subgrade should be done immediately prior to the placing of the base course and/or paving. Proper drainage of the paved areas should be provided since this will reduce moisture infiltration into the subgrade and increase the life of the paving.

Assuming that the paving subgrade will consist of the on-site soils (or comparable import with a CBR value of at least 10), compacted to at least 90% as recommended, parking areas subject to automobile traffic (assumed Traffic Index of 4%) may be paved with three inches of asphaltic paving placed on the compacted subgrade. Driveways and areas subject to truck traffic (assumed Traffic Index of 5%) may be paved with three inches of asphaltic paving and four inches of base course placed on the compacted subgrade. The paving sections were established using the design recommendations of the Asphalt Institute.

Careful inspection is recommended to verify that the recommended thicknesses or greater are achieved and that proper construction procedures are used.

The base course should meet the specifications for Class 2 Aggregate Base as defined in Section 26 of the State of California, Department of Transportation, Standard Specifications, dated July 1984. Alternatively, the base course could meet the specifications for untreated base as defined in Section 200-2 of the 1985 edition of the Standard Specifications for Public Works Construction. The base course should be compacted to at least 95%.

- 000 -

A Plot Plan and Appendix are attached and complete this report.

APPENDIX

EXPLORATIONS

The soil conditions beneath the site were explored by drilling eight borings at the locations shown on Plate 1. The borings were drilled to depths of 6 to 25 feet below the existing grade using 20inch-diameter bucket-type drilling equipment. Caving of the boring walls did not occur during drilling, and casing or drilling mud was not used to extend the borings to the depths drilled.

The soils encountered were logged by our field technician, and undisturbed and loose samples were obtained for laboratory inspection and testing. The logs of the borings are presented on Plates A-1.1 through A-1.8; the depths at which undisturbed samples were obtained are indicated to the left of the boring logs. The energy required to drive the sampler twelve inches is indicated on the logs. The soils are classified in accordance with the Unified Soil Classification System described 'on Plate A-2.

LABORATORY TESTS

The field moisture content and dry density of the soils encountered were determined by performing tests on the undisturbed samples. The results of the tests are shown to the left of the boring logs.

Direct shear tests were performed on selected undisturbed samples to determine the strength of the soils. Tests were also performed on remolded samples compacted to 90%. The tests were performed at field and increased moisture contents and at various surcharge

pressures. The yield-point values determined from the direct shear tests are presented on Plate 3, Direct Shear Test Data.

Confined consolidation tests were performed on three undisturbed samples and on one remolded sample compacted to 90% to determine the compressibility of the soils. Water was added to three of the samples during the tests to illustrate the effect of moisture on the compressibility. The results of the tests are presented on Plates A-4.1 through A-4.3, Consolidation Test Data.

The optimum moisture content and maximum dry density of the upper soils were determined by performing compaction tests on samples obtained from Borings 3 and 7. The tests were performed in accordance with the ASTM Designation D1557-70 method of compaction. After completion of the compaction tests, a California Bearing Ratio test was performed on the sample from Boring 7 in accordance with the ASTM Designation D1883-73 method. The results of the tests are presented on Plate A-5, Compaction and C.B.R. Test Data.

Soil corrosivity studies were performed for us by M. J. Schiff & Associates. The results are presented on Plates A-6.1 through A-6.3.

-000-

PLATE A - 1.2

İ

PLATE A - 1.3

								-			
		ELEVATION (ft.)	DEPTH (ft.)		MOISTURE (% of dry wt.)	DRY DENSITY (lbs./cu. ft.)	DRIVE ENERGY (ftkips/ft.)	SAMPLE LOC.	D E	ATE I QUIP LEVA	BORING 4 DRILLED: October 16, 1987 MENT USED: 20" - Diameter Bucket
EN					3.7	99	7	I		SM	SILTY SAND - fine, dark brown
-KD	licated.	75 -	- 5 -		11.2	120	8				Petroleum stain and odor
0 	ate ind		U		12.1	124	8			SC	Grey CLAYEY SAND - fine, petroleum stain, greyish brown
dmh	nd at the d s.	70 -			10.8	122	10	1			· · ·
W.P.	ation a nd time	ľ	- 10 -		12.9	122	7				
QW	boring loc ocations ar	65 -			10.0	101				CL	SANDY CLAY and CLAYEY SAND (AI TERNATE LAYERS).
O.E.	specific other k		- 15 -	-	10.9	121				SC	greenish brown
dmh	only at the s conditions at	60 -	- 20		11.6	115	8				Petroleum odor
۵ 	reon applies subsurface (55	- 20								
JMK	tive of		- 25		6.8	<u>114</u>	_7			SP	SAND - fine to medium, light reddish brown
F.T	iditions sho		20		•					NOT	E: Water seepage encountered at a depth of 14'. No caving. Petroleum stain and odor at random depths from 2-1/2' to 18'.
10/27/87	bsurface con anted to be										
_ DATE_	ne log of sut t is not warr		•								
A-87413	Note : T										
[LC	G	0	FE	BORING
-								_			PLATE A - 1.4

;

4

i

.

			_							· · · · · · · · · · · · · · · · · · ·	
		EVATION (ft.)	EPTH (tt.)		AOISTURE 6 of dry wt.)	Y DENSITY)s./cu. ft.)	VE ENERGY tkips/ft.)	MPLE LOC.	DATE DRIL EQUIPMEN	LED: Oo T USED: 20	BORING 5 tober 16, 1987 - Diameter Bucket
1	f	ELE	^		4 6) 4	R E E E E	DRI (f	SA	ELEVATIO	83.9	
SW					2.0	104	11		SM	SILTY SAND -	fine, light reddish brown
ŧKD	icated.	80 -			3.9	104	10			Brown and lig	ght brown
ბ 	date ind		- 5 -		7.6	108	8			Brown	
dmh	d at the c	75 -			7.7	104	5				
W.P.	ation and Id times.		- 10 -		15.4	117	3				
Q	oring loc. ations an	70 –							SC (LAYEY SAND	- fine to medium, brown to dark brown
0.E. <u> </u>	ecific bo ther loc:		- 15 -		14.1	<u>117</u>	7				
4	at the sp ions at o										·
뷥	ondi ondi	65 –	- 00		12.1	124	8				
ā	applies urface c		- 20 -	-					NOTE:	Slight water se	epage encountered at a depth of 10'.
	hereon of subs									to caving.	
I.	shown										
<u>ند</u> ا	nditions										
<u>17/87</u>	face co ed to be										
10	subsu										
DAT	e log of is not v										
	ote: Th It										
-87413	ž										
									•		
- 1						,	د	CG	OF BO	RING	
ŀ											LEBOY CRANDALL AND ASSOCIATES

•

÷

1

1

i

М.	AJOR DIVISIO	INS	GRO	DUP BOLS	TYPICAL NAMES
		CLEAN	20.0° 20.0°	GW	Well graded gravels, gravel-sand mixtures, little or no fines.
	GRAVELS	GRAVELS (Little or no fines)		GP	Poorly graded gravels or gravel-sand mixtur little or no fines.
	coarse fraction is LARGER than the No. 4 sieve size)	GRAVELS	11111111111111111111111111111111111111	GM	Silty gravels, gravel-sand-silt mixtures,
COARSE GRAINED		(Appreciable amt, of fines)		GC	Clayey gravels, gravel-sand-clay mixtures.
SOILS (More than 50% of material is LARGER than No. 20C sieve size)		CLEAN SANDS		sw	Well graded sands, gravelly sands, little or no fines.
	SANDS	(Little or no fines)		SP	Poorly graded sands or gravelly sands, littl or no fines.
	coarse fraction is SMALLER than the No. 4 sieve size)	SANDS	AND	SM	Silty sands, sand-silt mixtures,
		(Appreciable omt. of fines)		SC	Clayey sands, sand-clay mixtures.
				ML	Inorganic silts and very fine sands, rock flow silty or clayey fine sands or clayey silts with slight plosticity.
	SILTS AN (Liquid limit L	ID CLAYS ESS than 50)		CL	Inorganic clays of low to medium plasticity gravelly clays, sandy clays, silty clays, le clays.
FINE GRAINED				OL	Organic silts and organic silty clays of law plasticity .
SUILS More than 50% of material is SMALLER than No. 200 sieve size)				мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.
,	SILTS AN	ID CLAYS ATER than 50)	IIIII IIIII	сн	Inorganic clays of high plasticity, fat clays.
				он	Organic clays of medium to high plasticity organic silts.
HIGH	LY ORGANIC S	OILS	7777 7777 7777	Pt	Peat and other highly organic soils.

THE REAL OF STREET, SALES, NAMES OF STREET, SALES, SA

BOUNDARY CLASSIFICATIONS: Soils possessing characteristics of two groups are designated by combinations of group symbols.

PARTICLE SIZE LIMITS SAND GRAVEL SILT OR CLAY COBBLESI BOULDERS FINE MEDIUM COARSE FINE COARSE NO.40 NO.10 NO.4 U.S. STANDARD NO. 200 3/4 in. 3 in. (12 in.) SIEVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEM Reference : The Unified Soil Classification. System, Corps of Engineers, U.S. Army Technical Memorandum No. 3-357, Vol. 1, March, 1953. (Revised April, 1960)

LeROY CRANDALL AND ASSOCIATES

ś

1100000

1

. . . .

1111

∩| 1

α

¢

5

2.

PLATE A-3

1

PLATE A-4.2

PLATE A - 4.3

Boring Number And Sample Depth :	3 at 1' to 3'	7 at 1' to 3'
SOIL TYPE:	SILTY SAND	COMPACTED FILL - SILTY SAND
MAXIMUM DRY DENSITY*: (lbs./cu.ft.)	108	114
OPTIMUM MOISTURE CONTENT •: (% of dry wt.)	13	12
EXPANSION (%): (From optimum to saturated moisture content)	-	0.0
C. B. R. ** (% of standard)		
AT 90% COMPACTION :	- .	13
AT 95% COMPACTION :	-	44
* TEST METHOD :	ASTM Designation D 1557 - 70.	
** TEST METHOD:	ASTM Designation D 1883 - 73.	
COMPACTION AN	ND C. B. R. TEST	DATA

Ś

CHKD

Q

ы О

臣

5

DATE 11/13/87

1

A-87413

В В

-

1

LeROY CRANDALL AND ASSOCIATES PLATE A - 5

M. J. SCHIFF & ASSOCIATES

Consulting Corrosion Engineers

1291 NORTH INDIAN HILL BOULEVARD CLAREMONT, CALIFORNIA 91711 (714) 626-0967

November 9, 1987

i

ł

1

LeROY CRANDALL & ASSOCIATES 900 Grand Central Avenue Glendale, California 91201-3009

Attention: Mr. Mohammad Dorri

Re: Soil Corrosivity Tests Southern California Gas Company Torrance, California Your #A-87413, MJS&A #87199

Gentlemen:

Laboratory tests have been completed on four soil samples we selected from your borings for the subject project. The purpose of these tests was to determine if these soils may have deleterious effects on underground utilities and concrete foundations.

The electrical resistivity of each sample was measured in its as-received condition and again with distilled water added to create the standardized condition of saturation. Resistivities are at about their lowest value when the soil is saturated. The samples were chemically analyzed for the major anions and cations, and pH was measured. Results are shown in Table 1.

Electrical resistivities of soils are a measure of their resistance to the flow of corrosion currents. Corrosion currents, following Ohm's Law, tend to be lower in high resistivity soils. The electrical resistivity of a soil varies primarily with its chemical and moisture contents.

A commonly accepted correlation between electrical resistivity and corrosivity toward ferrous metals is:

below		1,000	ohm-	centimeters	severely corrosive
1,000	to	2,000	••	11	corrosive
2,000	to	10,000		t t	moderately corrosive
over		10,000	16	1.	mildly corrosive

Electrical resistivities measured in the laboratory with as-received moisture content were in the mildly corrosive category. When saturated, they were in mildly corrosive to corrosive categories. The resistivities of the samples dropped considerably with added moisture indicating that they were dry asreceived. The wide variations in soil resistivity can create concentration type corrosion cells that increase corrosivity beyond what would be expected from the soil resistivities alone.

pH values varied from 7.2 to 7.6 which is neutral and mildly alkaline. This is not significant in evaluating corrosivity in this case. The chemical content of the samples was low.

Even though we classify this site as only moderately corrosive to ferrous metals, some precautions against corrosion should be taken.

CORROSION AND CATHODIC PROTECTION ENGINEERING SERVICES SURVEYS • PLANS AND SPECIFICATIONS • INTERFERENCE PROBLEMS • SOIL TESTS • SUPERVISION, INSPECTION AND ADJUSTMENT OF INSTALLATIONS LeROY CRANDALL & ASSOCIATES MJS&A #87199

November 9, 1987 Page 2

Underground steel utilities should be given a high quality protective coating such as 40 mil extruded polyethylene, 20 mil plastic tape over primer per AWWA Standard C209, or hot applied coal tar enamel or tape per AWWA Standard C203.

Buried steel piping should be electrically insulated from dissimilar metals, cement-mortar or concrete coated steel, and above ground steel. Underground steel pipe must be bonded for electrical continuity if rubber gasketed, mechanical, grooved end, or other nonconductive type joints are used.

Cathodic protection is recommended for underground steel utilities.

Cast or ductile iron pipe, valves, and fittings should not be placed in contact with concrete, cement-mortar, or dissimilar metals. Polyethylene plastic sheets 8 mils thick and dielectric joints may be used to prevent such contact. Otherwise, no coating is necessary.

No special precautions are required for copper, asbestos-cement, or plastic utilities placed underground from a corrosion viewpoint. However, any iron valves or fittings should be protected as mentioned above.

Where metallic pipelines penetrate concrete structures such as building floors or walls, plastic sleeves, rubber seals, or other dielectric material should be used to prevent pipe contact with the concrete and reinforcing steel.

On any type of pipe, bare steel appurtenances such as bolts, joint harnesses, or flexible couplings should be coated with a coal tar or rubber based mastic after assembly.

Standard construction practices and concrete mixes may be used for concrete in contact with these soils using type 1 or 2 cement.

The scope of this study was limited to a determination of soil corrosivity and its general effects on materials likely to be used for construction. If the architect and/or engineers desire more specific information, designs, specifications, or review of design, we will be happy to work with them as a separate phase of this project.

Respectfully submitted, M. J. SCHIFF & ASSOCIATES

ton Myrumania

Leon Arzumanian

сb

Enc: Table 1

L17

Location and <u>Depth</u>	<u>Soil Type</u>	Soil Resistivity ohm-centimeters <u>As Rec'd Sat'd pH</u>			Calcium Ca	Chemical An Magnesium Mg	nalysis in Sodium <u>Na</u>	mg/kg (ppm) Bicarbonate HCO3	of dry soil- Chloride C1	Sulfate
.B1 1.5'	sand	120,000	21,000	7.2	trace	trace	23	trace	trace	trace
B2 10.5'	sand	12,000	1,800	7.5	40	trace	23	trace	71	30
B3 5.5'	sand	10,000	7,100	7.3	trace	trace	23	122	trace	15
B4 7.5'	sand	13,000	4,800	7.6	trace	trace	58	trace	71	15

Table 1 - LABORATORY TESTS ON SOIL SAMPLES

Carbonates = 0 for all samples

Southern California Gas Company Torrance, California Your #A-87413, MJS&A #87199 F5

ΡΙ.ΔͲϜ Δ__

د

Department of Toxic Substances Control

Meredith Williams, Ph.D., Director 8800 Cal Center Drive Sacramento, California 95826-3200

SENT VIA ELECTRONIC MAIL

February 23, 2024 Peerapol Suree Planning Associate City of Torrance 3031 Torrance Boulevard Torrance, CA 90503 psuree@torranceca.gov

RE: MITIGATED NEGATIVE DECLARATION (MND) FOR THE TORRANCE DEL AMO PROJECT, DATED FEBRUARY 8, 2024 STATE CLEARINGHOUSE NUMBER: 2024020302

Dear Peerapol Suree,

The Department of Toxic Substances Control (DTSC) has reviewed the MND for the Torrance Del Amo Project, which evaluates the proposed development of a 272-unit, 3-5-story residential condominium development over a two-level subterranean parking garage located on a 239,632 square-foot lot (or 5.5 Acre). In July 2022, a Phase I Environmental Site Assessment (ESA) was prepared for the project by GEOCON West, Inc. The ESA identified past petroleum production at the site in addition to above-ground storage tanks, an oil derrick and well, and apparent waste oil and water ponds in addition to other recognized environmental concerns. All of these were reported to be contaminated by "disposal surface impoundment". There are no records of any cleanup activities or oversight therefore, a Soil Management Plan (SMP) was recommended by GEOCON West, Inc. as noted in the Initial Study Mitigation

Yana Garcia

Secretary for

Environmental Protection

Gavin Newsom Governor

Peerapol Suree February 23, 2024 Page 2

Measure HAZ-1. Furthermore, asbestos-containing materials and lead-based paint could be encountered at the project site during demolition and remodeling phases. DTSC recommends the City of Torrance adhere to the following:

- 1. The City of Torrance enter into DTSC's Standard Voluntary Agreement (SVA) program or seek oversight with the Los Angeles County Site <u>Mitigation Unit</u> so a proper evaluation of the Project is completed. If entering into an SVA with DTSC, the <u>FLUXX portal link</u> is provided and the page also has a link to the <u>Fluxx User Guide</u> that can help you navigate the system. You will need to create a new profile and once in the system, click "Start a Request for Lead Agency Oversight Application." DTSC recommends that once the SVA is signed, a Preliminary Endangerment Assessment Report (PEA Report) be submitted for DTSC review. The PEA Report shall summarize all existing data and provide an evaluation of the possible risk to current and future users of the site. If you have any questions about the application portal, please contact the DTSC Brownfield Coordinator <u>Gregory Shaffer</u> or contact the <u>Application Portal</u> Inbox.
- 2. If buildings or other structures are to be demolished on any project sites included in the proposed project, surveys should be conducted for the presence of lead-based paints or products, mercury, asbestos containing materials, and polychlorinated biphenyl caulk. Removal, demolition, and disposal of any of the above-mentioned chemicals should be conducted in compliance with California environmental regulations and policies. In addition, sampling near current and/or former buildings should be conducted in accordance with DTSC's June 2006 Phase I Addendum Guidance.
- 3. DTSC recommends that all imported soil and fill material should be tested to ensure any contaminants of concern are within approved screening levels for the intended land use. To minimize the possibility of introducing contaminated soil and fill material there should be documentation of the

Peerapol Suree February 23, 2024 Page 3

> origins of the soil or fill material and, if applicable, sampling be conducted to ensure that the imported soil and fill material meets screening levels for the intended land use. The soil sampling should include analysis based on the source of the fill and knowledge of the prior land use.

DTSC appreciates the opportunity to review and comment on the MND for Torrance Del Amo Project. Thank you for your assistance in protecting California's people and environment from the harmful effects of toxic substances. If you have any questions or concerns, please contact me or a member of our <u>CEQA Unit Team</u>.

Sincerely,

Dave Kereazis

Dave Kereazis Associate Environmental Planner CEQA Unit-Permitting/HWMP Department of Toxic Substances Control Dave.Kereazis@dtsc.ca.gov Peerapol Suree February 23, 2024 Page 4

cc: (via email)

Governor's Office of Planning and Research State Clearinghouse <u>State.Clearinghouse@opr.ca.gov</u> Scott Wiley Associate Governmental Program Analyst CEQA Unit-Permitting/HWMP Department of Toxic Substances Control <u>Scott.Wiley@dtsc.ca.gov</u> Tamara Purvis Associate Environmental Planner

CEQA Unit-Permitting/HWMP

Department of Toxic Substances Control

Tamara.Purvis@dtsc.ca.gov

